Главная → 

Рефераты по математике

Биография и труды Колмогорова А.Н.

Описание: Я выбрал данную тему, потому что для меня интересна не только биография известного советского математика, но и его труды. Это тема достаточно обширная. В данном реферате я начну с рассмотрения биографии А.Н.Колмогорова. Далее будем рассматривать труды этого великого математика: аксиомы, теоремы. размер: 24.29 Кбскачать

Биография Огестена Луи Коши

Описание: Огюсте́н Луи́ Коши́ (фр. Augustin Louis Cauchy; 21 августа 1789, Париж — 23 мая 1857, Со, Франция) — великий французский математик, член Парижской академии наук, Лондонского королевского общества, Петербургской академии наук и других академий. размер: 3.22 Кбскачать

Биография Пифагора

Описание: Пифагор Самосский (ок. 580 - ок. 500 до н. э.) древнегреческий математик и философ-идеалист. Родился на острове Самос. Получил хорошее образование. По преданию Пифагор, чтобы ознакомиться с мудростью восточных ученых, выехал в Египет и как будто прожил там 22 года. Хорошо овладев всеми науками египтян, в том числе и математикой, он переехал в Вавилон, где прожил 12 лет и ознакомился с научными знаниями вавилонских жрецов. Предания приписывают Пифагору посещение и Индии. Это очень вероятно, так как Иония и Индия тогда имели торговые связи. размер: 16.32 Кбскачать

Булевы Функции: Функциональная полнота

Описание: В алгебре булевых функций P2=<P2;S>

S – Операцией является подстановка функции в функцию, суперпозиция.

Порождающее множество алгебры P2, принято называть полной системой булевых функций.

Система булевых функций является независимой, если не одной функцией этой системой нельзя выразить через остальные.

Система функций полна, если через неё можно выразить любую булеву функцию. Примеры полных систем:

Любую булеву функцию можно представить в нормальной форме используя только операции +,*,not.

{&, v, not}. Конъюнкцию с помощью законов Деморгана можно выразить через остальные элементы системы:

X&Y=not (not(X) v not(Y)) – поэтому система {v, not}.
размер: 6.77 Кбскачать

Вариационные задачи. Уравнение Эйлера. Примеры постановок задач, метод Ритца

Описание: Вариационная задача означает, как правило, нахождение функции (в рамках вариационного исчисления — уравнения на функцию), удовлетворяющей условию стационарности некоторого заданного функционала, то есть такой функции, (бесконечно малые) возмущения которой не вызывают изменения функционала по крайней мере в первом порядке малости. Также вариационной задачей называют тесно связанную с этим задачу нахождения функции (уравнения на функцию), на которой данный функционал достигает локального экстремума (во многом эта задача сводится к первой, иногда практически полностью). размер: 110.63 Кбскачать

Введение в математический анализ

Описание: Числовая последовательность размер: 123.88 Кбскачать

Введение в стереометрию

Описание: В стереометрии к основным понятиям планиметрии добавляется еще одно - плоскость, а вместе с ним - аксиомы, регулирующие «взаимоотношения» плоскостей с другими объектами геометрии. Таких аксиом три.

Первая- аксиома выхода в пространство - придает «театру геометрических действий» новое, третье измерение
размер: 12.88 Кбскачать

Вектор

Описание: Векторы расположенные либо на одной прямой, либо на параллельных прямых называются коллинеарными. Нулевой вектор считается коллинеарным любому вектору. Среди коллениарных векторов различают одинаково направленные (сонаправленные) и противоположно направленные векторы.

Векторы называются компланарными, если они лежат либо на одной плоскости, либо на прямых, параллельных одной и той же плоскости.
размер: 131.38 Кбскачать

Векторная алгебра

Описание: При изучении различных физических процессов и явлений нам приходится иметь дело с объектами разной природы. Некоторые величины в физике, механике и технике полностью описываются заданием их числовых значений. Такими величинами, например, являются длина, объём тела, его масса, температура, электрический заряд и другие. размер: 316.38 Кбскачать

Векторный метод решения стереометрических задач

Описание: Задача 1. Отрезок, соединяющий вершину тетраэдра с центроидом противолежащей грани, называется медианой этого тетраэдра; отрезок, соединяющий середины противоположных ребер тетраэдра, называется его бимедианой. Докажите:

а) что все медианы тетраэдра пересекаются в одной точке и эта точка делит каждую из медиан в отношении 3:1, считая от вершины;

б) все бимедианы тетраэдра пересекаются в одной точке и делятся ею пополам;

в) точка пересечения бимедиан тетраэдра совпадает с точкой пересечения его медиан.
размер: 31.75 Кбскачать
Страницы:    предыдущая   12345678910   следующая
Поиск по сайту

Предметы