Gyroscope. Gyroscopic devices

Автор работы: Пользователь скрыл имя, 15 Марта 2011 в 17:33, реферат

Описание работы

A gyroscope is a device for measuring or maintaining orientation, based on the principles of angular momentum. The device is a spinning wheel or disk whose axleis free to take any orientation. This orientation changes much less in response to a given external torque than it would without the large angular momentum associated with the gyroscope's high rate of spin.

Файлы: 1 файл

Gyroscope.doc

— 820.00 Кб (Скачать файл)

Dual-gimbal

    Such a CMG includes two gimbals per rotor. As an actuator it is more versatile than a single-gimbal CMG because it is capable of pointing the rotor's momentum vector in any direction. However, the torque caused by one gimbal's motion often must be reacted by the other gimbal on its way to the spacecraft, requiring more power for a given torque than a single-gimbal CMG. If the goal is simply to store momentum in a mass-efficient way, as in the case of the International Space Station, dual-gimbal CMGs are a good design choice. Instead, if a spacecraft requires large output torque per available input power, single-gimbal CMGs are a better choice.

Variable-speed

    Most CMGs hold the rotor speed constant. Some academic research has focused on the possibility of spinning up and down the rotor as the CMG gimbals. These so-called variable-speed CMGs (VSCMGs) offer few practical advantages, mostly because the output torque from the rotor is likely orders of magnitude smaller than that caused by the gimbal motion. So, this effect adds nothing of practical value on the time scale of the motion typical of CMGs. However, thanks to the additional degree of freedom, the variable-speed CMGs can be used to avoid the geometric singularity, which is the most serious drawback of the conventional CMGs. The VSCMGs also can be used as the mechanical battery which stores excess of electric energy in a form of kinetic energy of the flywheels.

Singularities

    At least three CMGs are necessary for linear control of spacecraft attitude. However, no matter how many CMGs a spacecraft uses, gimbal motion can lead to relative orientations that produce no usable output torque along certain directions. These orientations are known as "singularities" and are related to the kinematics of robotic systems that encounter limits on the end-effector velocities due to certain joint alignments. Avoiding these singularities is naturally of great interest, and several techniques have been proposed. David Bailey and others have argued (in patents and in academic publications) that merely avoiding the "divide by zero" error that is associated with these singularities is sufficient. Two more recent patents summarize competing approaches.

International Space Station

    The ISS employs a total of four CMGs as primary actuating devices during normal flight mode operation. The objective of the CMG flight control system is to hold the space station at a fixed attitude relative to the surface of the Earth. In addition, it seeks a Torque Equilibrium Attitude (TEA), in which the combined torque contribution of gravity gradientatmospheric dragsolar pressure, and geomagnetic interactions are minimized. In the presence of these continual environmental disturbances CMGs absorb momentum in an attempt to maintain the space station at a desired attitude. The CMGs may eventually saturate (absorbing momentum to the point where they can absorb no more), resulting in loss of effectiveness of the CMG array for control. Some kind of momentum management scheme (MMS) is necessary to allow the CMGs to hold a desired attitude and at the same time prevent CMG saturation. Since the CMGs are momentum-exchange devices, external control torques must be used to desaturate the CMGs, that is, bring the momentum back to nominal value. Some methods for unloading CMG momentum include the use of magnetic torques, reaction thrusters, and gravity gradient torque. For the space station, the gravity gradient torque approach is preferred because it requires no consumables or external hardware and because the gravity-gradient torque on the ISS can be very high.

 

         The list of the used literature

  1. Internet site en.wikipedia.org;
  2. Felix Klein and Arnold Sommerfeld, "Über die Theorie des Kreisels" (Tr., About the theory of the gyroscope). Leipzig, Berlin, B.G. Teubner, 1898-1914. 4 v. illus. 25 cm.
  3. Audin, M. Spinning Tops: A Course on Integrable Systems. New York: Cambridge University Press, 1996.
  4. U.S. Patent 1.279.471  : "Gyroscopic compass" by E. A. Sperry, filed June, 1911; issued September, 1918

Информация о работе Gyroscope. Gyroscopic devices