Расчет энтропии и количества информации в сообщении

Автор работы: Пользователь скрыл имя, 20 Декабря 2011 в 04:38, курсовая работа

Описание работы

Задачи данной курсовой работы заключаются:
– в анализе мешающих влияний в каналах связи при передаче и преобразовании информации;
– в теоретическом исследовании основ теории программной и аппаратной помехоустойчивости;
– в изучении методов составления рациональных маршрутов на примере организации передачи пакетных файлов между запланированными узлами.

Содержание работы

Введение 4
1 Теоретическая часть 6
1.1 Территориальная сеть связи 6
1.1.1 Разновидности каналов связи 6
1.1.2 Виды передачи данных 8
1.2 Оценка качества функционирования систем связи 10
1.2.1 Пропускная способность канала связи 11
1.2.2 Причины потерь информации в системе связи 13
1.2.3 Типы кабелей, применяемых в компьютерных сетях 16
1.3 Этапы повышения помехоустойчивости данных 18
1.3.1 Кодирование передаваемых данных 19
1.3.2 Методы обнаружения искажений информации 25
1.3.3 Дополнительные возможности повышения помехоустойчивости 27
2 Практическая работа 28
2.1 Определение оптимальной связывающей сети, согласно расстоянию и объему передаваемой / получаемой информации между звеньями сети 28
2.2 Определение оптимальной связывающей сети при оптимизации по критерию быстроты прохождения информационного пакета 33
2.3 Определение оптимальной связывающей сети при условии минимизации потерь информации по каналу связи. 34
2.4 Расчет энтропии и количества информации в сообщении 39
2.5 Кодирование сообщения в вид, соответствующий 9-ричной системе счисления 41
2.6 Итоговый выбор оптимального маршрута 44
Заключение 47
Список использованных источников 4

Файлы: 1 файл

Основной материал.doc

— 1.12 Мб (Скачать файл)

Содержание

 

Введение

       Обеспечение высокой помехоустойчивости устройств, построенных с использованием ЭВМ одна из основных проблем, решаемых разработчиками средств вычислительной техники и систем управления. Повышение степени интеграции электронных средств и снижение энергетической мощности полезных сигналов с другой стороны, приводит к тому, что выделение полезных сигналов на фоне действующих помех становится сложной схемотехнической и программно-алгоритмической задачей. Особую сложность эта задача приобретает для систем, работающих в условиях воздействия помех, аналитический и статистический учет которых по различным причинам затруднен. Существенное влияние оказывает также факт физической удаленности ЭВМ от управляемого объекта.

       Совершенствование средств управления энергоемкими установками происходит в направлении перехода от релейно-контактной элементной базы к электронной, что приводит к необходимости разработки специальных мер защиты элементов интегральной электроники от электромагнитных помех, поскольку энергия помехи, не приводящая к срабатыванию ранее применявшихся электромагнитных реле, превышает порог срабатывания современных больших и сверхбольших интегральных схем во много раз.

       Одновременно  следует отметить, что возникающие  от грозовых разрядов, аварийных и коммутационных процессов в мощной системе электроснабжения или в мощной тяговой сети импульсные помехи могут вызвать не только ложное срабатывание аппаратуры, но и ее полное или частичное разрушение.

       Таким образом, проблема обеспечения надежности и устойчивости работы управляющих систем со встроенными ЭВМ в условиях весьма многочисленных, разнообразных по физической природе, частотным характеристикам и энергетическому спектру помех, является актуальной и своевременной задачей, требующей для своего решения особых, нетрадиционных подходов.  
 

       Задачи  данной курсовой работы заключаются:

       – в анализе мешающих влияний в каналах связи при передаче и преобразовании информации;

       – в теоретическом исследовании основ теории программной и аппаратной помехоустойчивости;

       – в изучении методов составления рациональных маршрутов на примере организации передачи пакетных файлов между запланированными узлами. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

       

1. Теоретическая часть

      1.1 Территориальная сеть связи

       Территориальная сеть связи (ТКС) – это географически  распределенная сеть передачи данных (СПД), обеспечивающая оперативный и надежный обмен информацией между абонентами сети. Общепринятое название обменной информации – сообщение. Главные показатели эффективности ТКС –  верность и время доставки информации. Они зависят от пропускной способности каналов связи, числа и способов соединения каналов связи между абонентами, протоколов информационного обмена, и ряда других факторов.

       В ТКС используются телефонные, телеграфные, телевизионные, спутниковые сети связи. В качестве линий связи применяются кабельные линии связи (от простейших телефонных до специальных коаксиальных и волоконно-оптических), радиорелейные линии связи, и радиолинии. Среди кабельных линий связи наилучшие показатели имеют световоды. Они имеют высокую пропускную способность передачи данных (сотни мегабит в секунду), и нечувствительны к внешним электромагнитным полям при отсутствии собственных электромагнитных излучений.

      1.1.1 Разновидности каналов связи

       Линия связи состоит из физической среды, по которой передаются информационные сигналы, и аппаратуры передачи данных. Синоним термина канал связи. Основной тип сигналов – электрические и электромагнитные.

       В зависимости от среды передачи данных линии связи разделяются на проводные (воздушные), кабельные (в том числе волоконно-оптические) и радиоканалы наземной и спутниковой связи.

       Проводные линии связи представляют собой  открытые провода без изоляции и экранов. Они имеют низкую помехозащищенность и используются, в основном, для передачи телефонных и телеграфных сигналов.

       Кабели  представляют собой несколько проводников, заключенных в экранирующую и изолирующую оплетки. В компьютерных сетях применяются три типа кабелей: кабели на основе скрученных пар медных проводов, коаксиальные и волоконно-оптические кабели.

       Радиоканалы имеют передатчики и приемники  радиоволн, и отличаются друг от друга  частотным диапазоном, который определяет дальность радиосвязи. Для компьютерной связи используется диапазоны УКВ  и СВЧ, но для организации каналов в этих диапазонах необходима прямая видимость между передатчиком и приемником, или ретрансляция.

       Выделяют  три основных разновидности каналов  связи:

  1. симплексный, при связи приемника с передатчиком по одному каналу, с однонаправленной передачей информации (например, в телевизионной и радиовещательной сетях);
  2. полудуплексный, когда два узла связи соединены одним каналом, по которому информация передается попеременно то в одном направлении, то в противоположном (в информационно-справочных и запросно-ответных системах);
  3. дуплексный, позволяет передавать данные одновременно в двух направлениях за счет использования четырехпроводной линии связи (два провода для передачи, два других – для приема данных), или двух полос частот.

       Для повышения достоверности передачи данных основной канал может снабжаться дополнительным (обратным) каналом небольшой пропускной способности (на 1-2 порядка меньше основного), который используется для передачи служебной информации. По этому каналу передаются, например, сигналы подтверждения приема блоков данных и запросы на повторную передачу блоков при обнаружении ошибок.

       Различают также выделенные (некоммутируемые) и коммутируемые на время передачи информации каналы связи. При использовании  выделенных каналов связи приемопередающая аппаратура узлов связи постоянно соединена между собой. Этим обеспечивается высокая степень готовности системы к передаче информации, более высокое качество связи. Для коммутируемых каналов связи, создаваемых только на время передачи фиксированного объема информации, характерна небольшая стоимость, однако при этом имеют место потери времени на установление связи между абонентами (блокировки по приоритету и очередности).

       Системы телеобработки информации являются специализированными системами телекоммуникаций. Основная цель систем телеобработки данных (СТД) – обеспечить прием данных непосредственно с мест их получения и выдачу результатов обработки к местам использования. При этом нет необходимости в промежуточных носителях данных, повышается оперативность взаимодействия с ЭВМ, повышается скорость и эффективность работы системы, для которой производится обработка данных. Телеобработка позволяет использовать мощные ЭВМ с большими базами данных. С помощью линий связи к таким ЭВМ может подключаться значительное число пользователей, что обеспечивает высокий уровень загрузки и использования ЭВМ.

       Значительная  протяженность линий связи затрудняет возможность обмена отдельными сигналами  между ЭВМ и оконечным оборудованием. Поэтому взаимодействие ЭВМ и оконечного оборудования организуется с помощью сообщений – блоков данных, передаваемых в виде единого целого. Сообщения имеют специальную структуру, обеспечивающую представление в них наряду с собственно данными служебной информации, необходимой для идентификации сообщения и защиты данных от искажений. Возможность взаимодействия абонентов с ЭВМ только посредством сообщений вносит определенную специфику в организацию программного обеспечения телеобработки.

      1.1.2 Виды передачи данных

       В сетях ТКС информация передается в аналоговой форме. Это единственно возможный способ передачи информации по каналам связи. При передаче цифровых данных выполняется цифро-аналоговое и аналого-цифровое преобразование (ЦАП и АЦП) модемами на выходных и входных узлах связи. Для безошибочной передачи цифровых данных работа принимающего модема должна быть синхронизирована с работой передающего. Для этого используются два вида передачи данных: асинхронная и синхронная.

       Асинхронная передача реализуется по символьно-ориентированной схеме.  Каждая передаваемая последовательность состоит из стартового бита, за которым следуют информационные символы, и завершается стоповым битом. Асинхронный режим передачи используется для низкоскоростных устройств и устройств, у которых отсутствует буфер.

       Синхронная  передача применяется для высокоскоростной передачи данных. При символьно-ориентированной синхронной передаче блоку передаваемых символов предшествует один или несколько синхронизирующих символов. При побитно-ориентированной синхронной передаче в передаваемый блок данных перед сообщением включается флаг - специальная битовая последовательность.

       В зависимости от вида передачи данных используются соответственно синхронные и асинхронные модемы. Синхронная передача может проводиться только синхронными модемами, асинхронная  может выполняться и с помощью синхронных модемов.

       Применяется и гибридная схема передачи –  изохронная. Каждый символ в ней сопровождается стартовым и стоповым битами, а работа передающего и приемного модемов синхронизируется с помощью интервалов между передаваемыми символами.

       Пересылка данных в ТКС осуществляется последовательной передачей битов сообщения от источника к пункту назначения. Физически информационные биты передаются в виде модулированных или импульсно-кодовых электрических сигналов, которые зачастую называют цифровыми. Модулированные сигналы менее чувствительны к искажениям, обусловленным затуханием в передающей среде. Импульсно-кодовые сигналы  могут иметь одно или конечный набор значений в пределах определенного тактового интервала.

       1.2 Оценка качества функционирования систем связи

       Формирование  сигналов для передачи по линии связи  осуществляется аппаратурой передачи данных (Data Circuit terminating Equipment). Примерами DCE являются модемы. Подготовка данных для передачи осуществляется оконечным оборудованием данных (Data Terminal Equipment). Для усиления сигнала, проходящего через линию, а также для организации совместного использования линий связи (мультиплексирования и коммутации) может использоваться дополнительное оборудование.

       Хотя  сами сигналы в линиях связи всегда являются аналоговыми (непрерывными или кусочно-непрерывными), в зависимости от способа передачи данных линии связи делятся на цифровые и аналоговые. В цифровых линиях данные представляются сигналами, имеющими конечное число состояний, информация заключена в значениях сигнала в определенные моменты времени, причем сигнал может принимать конечное число значений. В аналоговых линиях используются сигналы с непрерывным диапазоном своих значений.

       При передаче данных в аналоговой форме  сигналы имеют более узкий спектр, поэтому их используют в линиях связи с узкой полосой пропускания, например в телефонных сетях. Цифровые сигналы имеют высокую скорость передачи данных, но более широкий спектр.

       Основные  характеристики канала связи – пропускная способность и достоверность передачи данных. Пропускная способность канала (количество информации, передаваемое в единицу времени) оценивается числом бит данных, передаваемых по каналу за единицу времени (в бит/с). Достоверность передачи данных оценивается по интенсивности битовых ошибок (Bit Error Rate), определяемой вероятностью искажения передаваемого бита данных. Величина BER для каналов связи без дополнительной защиты от ошибок составляет 10-4-10-6. Основная причина искажений – воздействие помех на линию связи. Помехи, как правило, носят импульсный характер и имеют тенденцию к группированию – образованию пачек помех, искажающих сразу группу соседних бит в передаваемых данных.

       1.2.1 Пропускная способность канала связи

       Пропускная  способность канала связи определяется полосой частот и помехоустойчивостью канала. Полоса частот, в которой амплитудно-частотная характеристика (АЧХ) линии связи имеет значение не ниже заданного (например, по уровню 0.5) называется полосой пропускания. Полоса частот DF = fв-fн, где fн и fв – нижняя и верхняя границы частот, определяет диапазон частот, эффективно передаваемых по линии. Полоса частот зависит от типа линии и ее протяженности. Проводные линии связи имеют полосу частот примерно 10 кГц, кабельные – 100 кГц, коаксиальные – 100 МГц, радиорелейные – 1000 МГц, волоконно-оптические – 100 ГГц. Коротковолновая радиосвязь для передачи данных использует диапазон частот от 3 до 30 МГц.

       Помехоустойчивость  линии зависит от мощности помех, создаваемых в линии внешней  средой или возникающих в самой  линии. Обычно для уменьшения помех проводники экранируют или скручивают. Наименее помехоустойчивыми являются радиолинии, хорошей помехоустойчивостью обладают кабельные линии, отличной – волоконно-оптические линии, не восприимчивые к электромагнитному излучению.

Информация о работе Расчет энтропии и количества информации в сообщении