Разработка тестовых заданий к допуску и защите лабораторных работ по химии для студентов химического факультета «Элементы V I А и V I В груп

Автор работы: Пользователь скрыл имя, 01 Апреля 2011 в 11:49, курсовая работа

Описание работы

Для достижения поставленной цели в курсовой работе нужно решить следующие задачи: 1) Изучить литературу по разработке проверочных тестовых заданий;

2) Изучить теоретический материал по элементам V I группы;
3) Раскрыть понятие, типы, структуру, элементы заданий в тестовой форме, требования к тестовым заданиям и способы оценивания результатов тестирования.

Файлы: 1 файл

курсовая работа.doc

— 461.00 Кб (Скачать файл)

Na2 S2 O3 + 4Cl2 + 5Н2 О = 2H2 SO4 + 2NaCl + 6HCl

Для самого сернистого газа процессы, ведущие к повышению валентности серы, протекают значительно труднее, чем для сернистой кислоты и ее солей. Наиболее важными из подобных реакций являются взаимодействия SO2 с хлором и кислородом.

С хлором сернистый газ соединяется только на прямом солнечном свету или в присутствии катализатора (камфора) по реакции

SO2 + Сl2 = >SO2 Cl2

с образованием хлористого сульфурила (SO2 CI2 ). Последний представляет собой бесцветную жидкость с резким запахом. Водой он разлагается (холодной–лишь медленно) с образованием серной и соляной кислот:

SO2 Cl2 + 2Н2 О – H2 SO4 + 2HCl

15) Если  хлористый сульфурил (т. пл. –54 °С, т. кип. +69 °С) можно рассматривать  как серную кислоту, в которой на хлор заменены оба гидроксила, то продуктом замещения только одного из них является хлорсульфоновая кислота:

Хлорсульфоновая кислота представляет собой бесцветную, дымящую на воздухе и резко пахнущую жидкость (т. пл. –80 °С, т. кип. 155 °С с разложением), бурно взаимодействующую с водой по реакции

SO2 (OH)Cl + H2 O = H2 SO4 +HCl

Получают  ее обычно действием газообразного  НСl на раствор SОз в серной кислоте: SO3 +HCl = SO2 (OH)Cl. Наряду с хлористым сульфурилом, хлорсульфоновая кислота находит применение при органических синтезах.

Молекула SОз имеет структуру плоского треугольника с атомом серы в центре. Трехокись серы характеризуется сильными окислительными свойствами: 

при соприкосновении с ней фосфор воспламеняется, из йодистого калия выделяется свободный иод и т. д. С другой стороны, она является кислотным ангидридом, причем образование H2 SO4 из серного ангидрида (SO3 ) и воды сопровождается большим выделением тепла:

Н2 О + SO3 = H2 SO4 + 19 ккал

Чистая 100%–ная серная кислота (т. н. моногидрат) представляет собой бесцветную маслянистую жидкость, застывающую в кристаллическую массу при +10 °С.

Концентрированная H2 SO4 является довольно сильным окислителем, особенно при нагревании (восстанавливается обычно до SO2 ). Например, она окисляет HJ и частично НВr (но не НСl) до свободных галоидов. Окисляются ею и многие металлы–Cu, Hg и др. (тогда как золото и платина по отношению к H2 SO4 устойчивы). Например, взаимодействие с медью идет по уравнению:

Cu + 2H2 SO4 = CuSO4 + SO2 + 2Н2 О

Свободная надсерная кислота представляет собой бесцветные кристаллы, плавящиеся при 65°С (с разложением). Она обладает очень сильными окислительными свойствами и при соприкосновении обугливает не только бумагу, сахар и т. п., но и пара–строение надсерной кислоты выражается формулой HO–SO2 –О–О–SO2 –ОН, т. е. она содержит перекисную цепочку.

Пространственная  структура отвечающего ей иона S2 O8 2–оказана на рис. 107. Каждая половина этого рисунка в отдельности соответствует строению сульфат–иона.

20) При  взаимодействии H2 S2 O8 с концентрированной перекисью водорода по уравнению

H2 S2 O8 + H2 O2 = 2H2 SO5 образуется мононадсерная кислота, по своему строению отвечающая серной кислоте, в которой один гидроксил замещен на группу ООН. Она представляет собой бесцветные кристаллы (т. пл. 45°С с разложением). Мононадсерная кислота является еще более сильным окислителе м, чем надсерная, и взаимодействие ее с многими органическими веществами (например, бензолом) сопровождается взрывом. Соли H2 SO5 малоустойчивы. В них она фигурирует, как одноосновная кислота 

2.3. Подгруппа селена.

  Содержание селена в земной коре составляет 1·10–50 %, теллура – 1 ·10–7%, а полония – лишь 2 ·10–15%. Последний относится к наименее распространенным в природе элементам. Он радиоактивен и с химической стороны почти не изучен.

  Основными  источниками получения селена и теллура служат отходы сернокислотного производства (пыль каналов и пылевых камер, ил промывных башен) и осадки («шламы»), образующиеся при очистке меди электролизом. Ежегодная мировая выработка селена исчисляется сотнями, теллура – десятками тонн. 

    При действии на них разбавленных кислот образуются селено–водород (H2Se) и теллуроводород (Н2Те). Оба они представляют собой бесцветные газы с характерными неприятными запахами. Растворимость их в воде примерно такая же, как у сероводорода, причем растворы показывают ясно выраженную кислую реакцию.

   H2Se и Н2Те являются кислотами более сильными, чем уксусная (К = 2· 10–5). Оба соединения (особенно Н2Те) весьма неустойчивы и легко разлагаются. Кислородом воздуха они постепенно окисляются и в газообразном состоянии и особенно в растворе уже при обычных температурах. В общем восстановительные свойства характерны для H2 Se и Н2 Те еще более, чем для сероводорода.

Все галоидные  соединения селена и теллура могут быть получены путем взаимодействия элементов. Известны следующие галогениды:

По своему характеру галогениды селена похожи на соответствующие производные серы, причем тип Э2 Г2 в данном случае менее, а тип ЭГ4 – более устойчив.

Галогениды теллура уже резко отклоняются по свойствам от производных серы. Так, TeF6 довольно легко разлагается водой, a TeJ4 образуется при совместном растирании элементов в присутствии воды (тогда как иодиды селена и серы вообще не получены).

При нагревании в токе воздуха селен и теллур сгорают с образованием двуокисей. Последние представляют собой бесцветные кристаллические вещества, сильно отличающиеся друг от друга по растворимости в воде: у SeO2 она весьма велика, у TeO2 очень мала.

Подобно SO2 , двуокиси селена и теллура являются кислотными ангидридами: при растворении их в воде образуются соответственно селенистая (H2 SeO3 ) и теллуристая (Н2 ТеО3 ) кислоты. Обе они диссоциированы несколько слабее сернистой.

Соли селенистой кислоты (селенистокислые, или селениты) могут быть получены нейтрализацией растворов H2 SeO3 , соли теллуристой (теллуристокиелые, или теллуриты) –растворением ТеО2 в щелочах. И те и другие, как правило, сходны по свойствам с соответствующими сульфитами.

В то время  как для четырехвалентной серы восстановительные свойства характернее окислительных, для SeIVи TeIVимеет место обратное: они довольно легко восстанавливаются до элементарных Se и Те, например, по схеме:

Н2 ЭО3 + 2SO2 + Н2 О = 2H2 SO4 + Э

Напротив, селен и теллур переходят в шестивалентное состояние лишь под действием наиболее сильных окислителей.

Селенистая кислота (K1 = 2·10–3, K2 = 5·10–9) может быть получена по реакции:

Информация о работе Разработка тестовых заданий к допуску и защите лабораторных работ по химии для студентов химического факультета «Элементы V I А и V I В груп