Искусственное выращивание рубинов

Автор работы: Пользователь скрыл имя, 03 Октября 2011 в 23:53, реферат

Описание работы

Рубин и сапфир — минералы, которые хотя и различаются по внешнему виду, обладают идентичной кристаллической структурой и свойствами, за исключением присутствия незначительных концентраций элементов-примесей, придающих им характерные цвета. Еще в 1672 г. Роберт Бойль отметил, что «твердость рубина и сапфира настолько одинакова, что ювелиры считают их одним камнем, различающимся только цветом», и подтвердил эту мысль указанием на одинаковый удельный вес. Рубин и сапфир состоят в основном из окиси алюминия А12О3,

Содержание работы

ВВЕДЕНИЕ 3
ЖЕНЕВСКИЕ РУБИНЫ 4
ОГЮСТ ВЕРНЕЙЛЬ 6
МЕТОД ВЕРНЕЙЛЯ НА СОВРЕМЕННОМ ЭТАПЕ 9
«ДЖЕВА» 13
ЗВЕЗДНЫЕ КАМНИ 15
ДРУГИЕ МЕТОДЫ 16
СПИСОК ЛИТЕРАТУРЫ 19

Файлы: 1 файл

рубин.doc

— 506.50 Кб (Скачать файл)

     Вернейль в течение 2 часов выращивал були весом 2,5—3 г (12—15 карат). Були были округлой формы, и некоторые из них имели диаметр 5—6 мм. Более детальное описание процесса с чертежами аппарата содержится в публикации 1904 г. Этот аппарат вместе с первыми выращенными таким способом кристаллами теперь выставлен в Школе инженерного искусства и ремесел в Париже. Вернейль занимался также проблемой вибратора, который стряхивает порошок в поток кислорода, и позднее заменил его молоточком, работающим от мотора. Это простое и разумное приспособление используется и в большинстве современных аппаратов, применяемых для выпуска коммерческой продукции.

     Из описаний, опубликованных Вернейлем, ясно, что он был в основном доволен качеством полученных им рубинов, которые обладали «восхитительной» флуоресценцией, той же твердостью, что и природные рубины, и были пригодны для высококлассной полировки. Однако ему не было известно, что искусственные рубины отличаются от природных камней вариациями интенсивности окраски и присутствием газовых пузырьков, возникающих тогда, когда содержание кислорода в пламени не поддерживается на необходимом довольно низком уровне.

     После публикации 1904 г. Вернейль направляет свои усилия на получение сапфира. Тогда не было известно, какой элемент обусловливает синий цвет этого камня, однако ему пригодились сведения о том, что природным камням этот цвет придает совместное присутствие окислов железа и титана. В это время Вернейль работал консультантом фирмы «Л. Хеллер и сын» в Нью-Йорке и Париже. В его сапфирах содержались добавки 1,5% окиси железа и 0,5% окиси титана вместо окиси хрома, используемой в рубинах. Синяя окраска кристаллов обусловлена довольно сложным механизмом. Обычно цвет драгоценных камней связан с поглощением света характерной длины волны определенным элементом, особенно так называемыми переходными элементами, такими, как железо, кобальт, никель и хром. Если из спектра белого света удалить определенную полосу цветов, то свет, попадающий в глаз, будет окрашен в так называемый дополнительный цвет. Например, рубины потому красного цвета, что хром в кристаллической решетке корунда поглощает зеленый свет. Чтобы сапфир приобрел синий цвет, необходимо поглощение желто-оранжевого света. Такое поглощение имеет место, когда происходит электронный «скачок» внутри кристалла от атомов железа к атомам титана. Поэтому для окраски кристалла в синий цвет требуется совместное присутствие железа и титана.

     В 1911 г. были опубликованы патенты на выращивание сапфира, в последнем из которых содержались сведения об очистке от пузырьковых пятнышек, о кривых линиях роста и о растрескивании кристаллов — типичного явления для синтетических сапфиров. В 1913 г. годовой объем производства искусственного сапфира достиг 6 млн. карат (1200 кг), а рубина—10 млн. карат (2000 кг). Вернейль, благодаря которому это стало возможным, умер 13 апреля того же года в возрасте 57 лет. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

МЕТОД ВЕРНЕЙЛЯ НА СОВРЕМЕННОМ  ЭТАПЕ

 

     Метод Вернейля, называемый иначе методом  плавления в пламени, относится к методам кристаллизации с ограниченной зоной расплава (рис. 3). Он заключается в том, что вещество в виде порошка (размер частиц 2—100 мкм) сыплется из бункера через газовую горелку и попадает на верхний оплавленный торец монокристаллической затравки, медленно опускающейся с помощью специального механизма. Пролетая через кислородно-водородное пламя, частицы шихты оплавляются и попадают в тонкую (толщиной ~ 0,1 мм) пленку расплава. Так как затравка медленно опускается, то пленка расплава кристаллизуется с нужной скоростью, постоянно пополняясь сверху. При согласованном расходе шихты, водорода и кислорода и скорости опускания затравки толщина пленки поддерживается практически постоянной. На рис 4 приведена фотография установки КАУ-1 для кристаллизации по методу Вернейля. Эта установка позволяет выращивать кристаллы в форме стержней диаметром до 20 мм и длиной до 500 мм (рис.5). С целью уменьшения остаточных напряжений в кристаллах разработаны различные конструкции газовых горелок, создающие дополнительный обогрев кристалла при его росте. В этом случае диаметр кристалла может достигать 40 мм.

     Распространение метода Вернейля связано с успешным его применением для выращивания  монокристаллов рубина, лейкосапфира, алюмомагниевой шпинели MgAl2O4 и рутила ТiO2.

     Метод Вернейля обладает рядом преимуществ, среди которых следует выделить:

     - отсутствие контейнера, в результате чего снимаются проблемы физико-химического взаимодействия расплава с материалом контейнера, а также проблема возникновения остаточных напряжений из-за упругого воздействия стенок контейнера;

     - возможность проведения процесса кристаллизации в области 2000° С на воздухе, причем окислительно-восстановительный потенциал атмосферы кристаллизации регулируется за счет изменения относительного содержания кислорода и водорода в пламени;

     - техническую простоту и доступность наблюдения за ростом кристаллов.

     Метод Вернейля, однако, имеет определенные недостатки, к которым следует отнести:

     - трудность подбора оптимального соотношения между скоростью опускания затравки, подачей шихты и расходом рабочих газов;

     - возможность попадания в расплав примесей из рабочих газов, поскольку расход их значителен (02 0,7 м3/ч, Н2 1,5—2 м3/ч), а также из воздуха и керамики печи;

     - развитие высоких температурных градиентов в зоне кристаллизации (30—50 град/мм), способствующих возникновению в кристаллах больших внутренних напряжений (до 10—15 кГ/мм2).

     Метод Вернейля технически просто позволяет  видоизменять форму растущего кристалла. Например, несоосность горелки и механизма перемещения позволяет выращивать кристаллы в форме труб (рис. 6, а). Этот способ позволяет также получать керамические трубы, используемые для изготовления муфелей печи аппарата Вернейля.

     На рис. 8, б, в приведены различные схемы аппарата Вернейля, позволяющие выращивать монокристаллы пластинчатой формы, а также в форме дисков, полусфер и конусов.

     Газопламенный нагрев, используемый в аппарате Вернейля, основан на выделении теплоты при реакции

     Н2 + 1/2O2 = Н2O + 57, 8 ккал/моль. 

     Максимально возможная температура в кислородно-водородном пламени порядка 2500° С. Она ограничена тем, что при более высоких температурах идет диссоциация продуктов горения, сопровождающаяся поглощением тепла.

     Для повышения температуры в аппарате Вернейля используют другие источники нагрева: плазменный, электронно-лучевой, радиационный, электродуговой и др.

     Плазменный нагрев заключается в реакциях ионизации, а затем деионизации одно- и двухатомных газов, таких, как аргон, гелий, азот, кислород, а также их смесей. Ионизация этих газов осуществляется либо электродуговым разрядом, либо с помощью индукции на частоте 4—8 Мгц. На рис. 7 представлена схема аппарата с плазменным нагревом. Несмотря на возможность получения таким методом сверхвысоких температур (~16 000° С), его использование ограничено техническими трудностями, связанными с подачей шихты в пленку расплава. Поток шихты сильно влияет на распределение температуры в плазме, а следовательно, на ее стабильность.

  

     Представляет интерес радиационный (световой) нагрев, когда излучение вольфрамовой лампы мощностью 5—10 квт фокусируется на торец затравки, а затем осуществляется рост по методу Вернейля (рис. 8). Такая система удобна особенно для поисковых исследований, так как позволяет изолировать источник нагрева от кристаллизационной камеры. С помощью этой системы технически просто создать контролируемую атмосферу, а также нужную ее чистоту, однако кристаллы растут напряженными. На установке, схема которой приведена на рис. 8, были получены тугоплавкие кристаллы корунда, магний-алюминиевой шпинели (MgAl2O4), рутила (ТiO2), окиси иттрия (Y2O3) и др.

     Близкой к методу Вернейля является кристаллизация в электрической дуге, отличающейся тем, что наряду с получением высокой температуры создается направленный поток электрически заряженного вещества (рис. 9). Такой способ получил распространение для выращивания монокристаллов металлов, полупроводников, а также диэлектриков, обладающих существенной электропроводностью вблизи температуры плавления. 

«ДЖЕВА»

 

     Несколько фирм занималось производством рубинов и сапфиров, но наибольшего успеха добился Хранд Джевахирджан, который ранее работал на фабрике по выращиванию рубинов женевского типа в Париже. Джевахирджан понял преимущества печи Вернейля и еще с 1903 г. начал использовать его метод. В 1905 г. он переводит производство в большой цех в Виллар-Боно близ Лиона, а затем на фабрику в Аруди в Нижних Пиренеях. В 1914 г. Джевахирджан снова переводит производство, на этот раз туда, где и сейчас располагается фирма,— в Монте близ Женевского озера в Швейцарии. При использовании технологии, основанной на плавлении в пламени, решающим фактором, определяющим рентабельность производства, является стоимость кислорода и водорода для горелок, поэтому с первых же дней становления фирмы, известной как «Джева», пристальное внимание было уделено вопросам экономики получения этих газов. В первые годы синтеза драгоценных камней кислород и водород производились на месте традиционными способами и даже продавались как побочные продукты. В 1948 г. компания монтирует оборудование для получения этих газов путем электролиза воды. Приемлемая цена получаемых таким образом кислорода и водорода может быть достигнута только при условии дешевой электроэнергии. В этом смысле расположение завода у подножия Альп, где гидроэлектростанции дают относительно недорогую электроэнергию, можно считать идеальным. Позднее кислород начали получать при испарении жидкого воздуха, что было также экономически выгодно при условии низких цен на электроэнергию. О высокой рентабельности производства фирмы «Джева» можно судить хотя бы по такому факту. В конце 60-х годов, когда в лаборатории рубины выращивались для научных целей, розничная цена ограненного камня фирмы «Джева» была ниже стоимости кислорода и водорода, необходимых для выращивания кристалла того же размера в лаборатории. Если не считать Восточной Европы и, может быть, Китая, эта фирма занимает господствующее положение в коммерческом производстве за пределами Японии, где находится главный производитель и поставщик — фирма «Накадзуми». В 1946 г. фирма «Джева» установила около 1400 печей, и современная производительность завода — около 300 млн. карат, или 60 000 кг. Кристаллы корунда используются в основном при производстве часов и в других инструментах, но фирма «Джева» выращивает рубины также для лазеров, и ее материалы были использованы на искусственном спутнике Земли «Тельстар».

     В настоящее время изготовление драгоценных камней не является основным производством фирмы «Джева», тем не менее компания ведет исследования по легированию кристаллов различными добавками и получению камней необычных цветов. В современном перечне цветных корундов содержится 32 разновидности этого камня, хотя последний из них помечен «№ 75», что указывает на широкий спектр расцветок, достигнутых в разные годы. Метод плавления в пламени пригоден и для получения шпинели, для которой характерна еще более широкая палитра окрасок. Шпинель — минералогическое название алюмината магния (МgА12O4). Первый синтез этого минерала с помощью плавления в пламени приписывается ученику Вернейля Л. Пари. Изучая влияние различных добавок на цвет корунда Пари обратил внимание на то, что магний в комбинации с другими элементами вызывает существенное изменение окраски кристаллов. В конце концов он понял, что такое изменение связано с перестройкой кристаллической структуры материала були.

     При использовании смеси одной части окиси магния (МgO) с одной частью глинозема (Аl2O3) не получаются були хорошего качества. В печах с кислородно-водородными горелками лучшего результата удается достичь, когда смеси обеднены магнезией. Були высокого качества имеют формулу, в которой на 5 частей Аl2Оз приходится 2 части MgО. Это различие состава синтетических и природных камней позволяет легко идентифицировать их на основе измерения некоторых  физических свойств,  например плотности. 

     Придание  синтетическим шпинелям и корундам свойств совсем не родственных им минералов, таких, как александрит или аквамарин, поднимает вопрос о терминологии. Синтетическую шпинель, имеющую вид аквамарина, следует рассматривать как «имитацию», и, может быть, разумнее называть этот материал «бледно-голубой шпинелью», чем считать ее подделкой аквамарина.

     В середине 30-х годов произвели  сенсацию бесцветные шпинели, когда  они продавались как заменители алмаза — «алмазы Джурадо». Изощренная реклама и небольшое число  лабораторий по определению Драгоценных  камней привели часть покупателей  и торговцев ювелирными изделиями к мысли о том, что эти камни нельзя отличить от алмазов, и создалась кратковременная паника, вызванная боязнью падения цены на алмазы. Секция драгоценных камней Лондонской торговой палаты была вынуждена выступить по радио с заявлением, содержащим заверения в том, что не составляет большого труда отличить «алмазы Джурадо» от истинных алмазов. Действительно, шпинель по сравнению с другими камнями не лучший заменитель алмаза.

Информация о работе Искусственное выращивание рубинов