Тунельная сушилка

Автор работы: Пользователь скрыл имя, 19 Октября 2016 в 09:55, курсовая работа

Описание работы

К гипсовым крупноразмерным изделиям относятся перегородочные плиты и панели, получаемые из гипсобетонных и гипсоволокнистых масс, панели для санитарных узлов и кабин, получаемые на основе водостойкого гипсоцементно-пуццоланового вяжущего, плиты для настила полов под линолеум, вентиляционные блоки и др.
Гипсобетонные панели применяют для устройства ненесущих перегородок в жилых, общественных и производственных зданиях с относительной влажностью воздуха не более 60%.
Панели из гипсобетона изготовляют методом непрерывного формования на прокатных станах и в кассетах.

Файлы: 1 файл

курсовая заочка.doc

— 773.00 Кб (Скачать файл)

Наименее эффективным при сушке является испарение влаги с полуфабриката методом конвективного нагрева его теплоносителем, так как передача теплоты изделию осуществляется недостаточно интенсивно из-за плохой теплопроводности воздуха, омывающего поверхность изделия, Использование радиационного обогрева электрическими и газовыми излучателями с направленным потоком лучистой энергии на каждое изделие в отдельности наиболее эффективно.

Основным преимуществом новых методов сушки является непосредственное повышение температуры в самом подвергающемся сушке полуфабрикате без участия газовой (воздушной) среды как передатчика теплоты.

Эти методы сушки могут быть различны: кондуктивные, диэлектрические, сверхвысокочастотные или микроволновые. При диэлектрической сушке можно применять прерываемый (импульсный) режим. Недостаток этих методов сушки — высокая стоимость и сложность установок для сушки полуфабриката.

Сушка инфракрасным излучением — один из новых и весьма перспективных методов сушки, широко внедряемый в промышленность совместно с конвективным нагревом. При нагреве полуфабриката инфракрасными лучами происходит поглощение материалом изделия лучистой энергии с длиной волны 140—650 нм с последующим переходом ее в тепловую энергию. Глубина проникновения инфракрасного излучения в керамический полуфабрикат определяется его материалом и структурой, но вообще мала — 0,05—1 мм. Капилляры или поры многократно отражают лучи от своих стенок, энергия этих лучей может поглощаться почти полностью, как абсолютно черным телом. Шероховатость поверхности изделий, наличие царапин, волнистости, загрязнения поверхности увеличивают коэффициент поглощения лучей.

При сушке изделий инфракрасными лучами учитывают, что фарфоровое изделие поглощает значительно большее количество лучистой энергии, а гипсовая форма поглощает ее во много раз меньше, что может привести к ее перегреву. При замене гипсовых форм на формы из других материалов (керамических и др.) опасность их перегрева снижается. Продолжительность сушки изделий 15—30 мин при толщине стенок 2,5— 4 мм. Широкому распространению сушил радиационного типа способствует резкое сокращение продолжительности сушки за счет повышения средней скорости влагоотдачи до 3,25 кг/м2 ч против 0,4 кг/м2 ч, достигаемой при конвективной сушке.

При использовании инфракрасного излучения или комбинированной сушке необходимо обеспечить интенсивный отбор влажного воздуха, так как пары воды, образующиеся над поверхностью изделий, сильно поглощают инфракрасные лучи, снижая тем самым эффективность сушки.

При газовом отоплении в качестве излучателей применяют инжекторные горелки (микрофакельные), при электронагреве — лампы марок ЗС, ЗС-1 и другие мощностью 500 Вт, карбидокремневые нагреватели, металлические нагреватели из нихромовой проволоки. Температура нагрева излучателей около 850—650° С. При сушке в первой стадии в гипсовых формах мощность лучистой энергии определяется необходимостью частичного нагрева гипсовой формы и достигает 25 Вт/см2, в то время как во второй стадии без формы она снижается до 0,2—0,8 Вт/см2. Продолжительность первой стадии сушки 15—20 мин, второй 10—15 мин. Расход электроэнергии в первой стадии сушки около 2 Вт-ч на 1 кг испаряемой влаги.

Организация скоростной, в том числе и высокотемпературной сушки наиболее полно отвечает требованиям автоматизированного производства изделий.

 

 

3.2. Устройство, работа и  параметры теплового агрегата

Туннельная сушилка содержит сушильную камеру 1, в которой соединенные друг с другом вагонетки 2 медленно перемещаются на рельсах вдоль очень длинной камеры прямоугольного сечения. На входе и выходе камера имеет герметичные двери, которые одновременно периодически открываются для загрузки и выгрузки материала: вагонетка 2 с высушенным материалом удаляется из камеры, а с противоположного конца в нее поступает новая вагонетка с влажным материалом. Перемещение вагонеток производится с помощью троса и механической лебедки (на чертеже не показано). Свежий воздух, нагретый в калориферах 4, засасывается вентиляторами 3 и подается в сушильную камеру 1.

Туннельная сушилка работает с частичной рециркуляцией сушильного агента и используется для сушки больших количеств штучных материалов, например керамических изделий.

Отработанный воздух отводится в систему пылеочистки (на чертеже не показано), которая состоит из акустической установки (на чертеже не показано), оптимальными параметрами которой для звуковой обработки среднедисперсной пыли являются: уровень звукового давления 140 дБ и более, частота колебательного движения 900 Гц, концентрация пыли в воздушном потоке не менее 2 г/м, время озвучивания 1,5...2 с, и циклона с отсасывающим вентилятором (на чертеже не показано).

Туннельная сушилка работает следующим образом.

Вагонетки 2 медленно перемещаются на рельсах вдоль очень длинной камеры прямоугольного сечения (коридора). На входе и выходе коридор имеет герметичные двери, которые одновременно периодически открываются для загрузки и выгрузки материала: вагонетка с высушенным материалом удаляется из камеры, а с противоположного конца в нее поступает новая вагонетка с влажным материалом. Перемещение вагонеток производится с помощью троса и механической лебедки (на чертеже не показано). Сушильный агент движется прямотоком или противотоком к высушиваемому материалу. Свежий воздух, нагретый в калориферах 4, засасывается вентиляторами 3 и подается в сушильную камеру 1.

Туннельная сушилка работает с частичной рециркуляцией сушильного агента и используется для сушки больших количеств штучных материалов, например керамических изделий.

Воздух (сушильный агент) вместе с мелкими частицами материала попадает в акустическую установку, параметры звуковых колебаний которой настраиваются от блока управления. В акустической установке происходит отделение от воздуха пылевых частиц, так как под действием звукового поля и связанных с ним колебательных процессов, происходящих в среде сушильного агента, пылевые частицы слипаются, то есть коагулируют, образуя крупные агрегаты, что значительно облегчает последующую очистку сушильного агента в газоочистных аппаратах. На взвешенные частицы при воздействии акустических колебаний действуют следующие основные факторы: совместное колебание частиц и газовой среды, динамические силы между соседними частицами. Крупные частицы оседают вниз либо в акустической установке, либо поступают в полость, связанную с инерционным пылеотделителем.

Оптимальными параметрами для звуковой обработки среднедисперсной пыли являются: уровень звукового давления 140 дБ и более, частота колебательного движения 900 Гц, концентрация пыли в потоке сушильного агента не менее 2 г/м, время озвучивания 1,5...2 с. Эти параметры обусловлены тем, что в зависимости от их величины взвешенная частица либо участвует в колебаниях среды (полностью или частично), либо не участвует, так как на частицу и среду действуют силы Стокса. Более того, при пропускании звуковых волн через объем газа, находящегося в некотором замкнутом сосуде, в последнем устанавливаются стоячие звуковые волны с образованием узлов (скорость колебаний равна нулю) и пучностей, в которых амплитуда колебаний скорости максимальна. Частота колебательного процесса, равная 900 Гц, создает для концентрации пыли в потоке сушильного агента, равной не менее 2 г/м3, такую амплитуду звуковой волны, при которой амплитуда скорости частицы, определяемая отношением интенсивности звука (уровень звукового давления 140 дБ и более) к скорости звука в среде, будет находиться в области пучности стоячих звуковых волн в заданном замкнутом сосуде (акустической установке), что и определяет в конечном счете интенсивность акустической коагуляции, то есть скорость образования крупных частиц. Время озвучивания 1,5...2 с назначается из условия образования пучности стоячих звуковых волн в заданном замкнутом сосуде. Если время озвучивания будет за пределами диапазона 1,5...2 с, то это приведет к образованию узлов в стоячих волнах (скорость колебаний равна нулю) и, как следствие, к ослаблению эффекта акустической коагуляции.

Микропроцессор соединен с датчиками давления, температуры, влажности, скорости воздушных и псевдоожиженных потоков (на чертеже не показано), установленных в элементах сушилки, и с исполнительными органами (на чертеже не показано), регулирующими параметры всех элементов сушилки. Микропроцессор проводит анализ параметров протекания процесса сушки и задает оптимальный режим посредством воздействия управляющими сигналами на исполнительные органы элементов сушилки.

 

3.3. Расчет процесса горения  топлива

Целью данного расчета является определение следующих параметров процесса сжигания топлива на единицу массы (или объема):

1. расхода воздуха,

2. объёма и состава дымовых  газов,

3. температуры горения топлива,

4. для проверки правильности  расчетов составляется материальный баланс процесса горения.

В основе расчета лежат стехиометрические реакции окисления горючих компонентов топлива. Расчет ведется на рабочее топливо (с учетом его влаги и золы). Методика расчета горения газообразного топлива проще, т.к. состав его выражается в объёмных процентах, а газы вступают в реакции пропорционально своим объёмам. Методика расчета горения твердого и жидкого топлива, состав которого выражается в массовых процентах, предусматривает пересчет полученных по уравнениям реакций горения масс воздуха и продуктов окисления в кубометры путем деления на плотность. Все расчеты выполняются при нормальных условиях.

В таблице приведены составы природных газов (объемные в %)

Мазут марки 60. Содержание золы АР = 0,2% , содержание влаги принимаем WР=3%. Коэффициент расхода воздуха при сжигании мазута с помощью форсунки низкого давления принимаемa=1,2. Воздух для горения поступает неподогретым.

Состав горючей массы мазута, %

СГ

НГ

ОГ

Сумма

87,6

10,7

0,5

0,5

0,7

100


 

Определяем состав рабочего топлива, находим содержание элементов в рабочем топливе

 

 

 

 

 

 

 

Состав горючей массы мазута, %

СР

НР

ОР

АР

Сумма

84,8

10,3

0,5

0,5

0,7

0,2

3

100


 

Теплоту сгорания мазута находим по формуле:

 

Теоретически необходимое для горения количество сухого воздуха находим по формулам:

 

Количество атмосферного воздуха при его влагосодержании d = 10 (г/кг сух воз) равно:

 

Действительное количество воздуха при коэффициенте расхода a =1,2:

Сухого 

Атмосферного 

Количество и состав продуктов полного горения при a =1,2 находим по формулам:

 

  

 

 

Общее количество продуктов горения при a=1,2:

Процентный состав продуктов горения при a=1,2:

 

 

Сумма равна 100%

Составляем материальный баланс процесса горения на 100 кг топлива при a=1,2

Материальный баланс процесса горения

ПРИХОД

КГ

РАСХОД

КГ

 

Топливо

100

Зола

0,2

 

Воздух

 

Продукты горения

   

370,91

310,98

 

1221,53

1,4

 

15,99

111,68

 
   

1221,98

 
   

61,88

 
   

Невязка

0,21

 

Итого

1708,33

Итого

1708,33

 

 

Невязка баланса составляет:

Определяем теоретическую температуру горения. Для этого находим общее теплосодержание продуктов горения (без подогрева воздуха и топлива):

 (2.14)

По I-t диаграмме при a=1,2 находим теоретическую температуру горения

tТЕОР = 1815 0C

Определяем действительную температуру горения при коэффициенте hn=0,8.

Расчетное теплосодержание равно:

По I-t диаграмме находим действительную температуру горения мазута

tДЕЙСТ=1500 0C.

 

3.4. Расчет производительности  теплового агрегата

Рассчитать и спроектировать туннельную сушилку для кирпичного завода производительностью 33млн.шт.в год по годной продукции.

Сушка производится горячим воздухом, отбираемым от туннельных печей. Начальную температуру воздуха при входе в сушилку принимают 394К,конечную-311К.

Информация о работе Тунельная сушилка