Контрольная работа "Теплотехника"

Автор работы: Пользователь скрыл имя, 04 Января 2011 в 15:16, контрольная работа

Описание работы

1.Источники теплопоступлений в рабочие зоны производственных помещений. Написать и пояснить формулы расчета теплопоступлений испаряющейся влаги, остывающего материала, людей.
2. Рассчитать теплопотери через перекрытия в цеху, который имеет: длинна — 96 м, ширина — 72 м, высота — 6 м. Температура наружного воздуха tн = -10°С, внутреннего воздуха tв = 18°С, Rо = 0,92 м2·C/Вт.

3.Построение процессов изменения состояния воздуха на i-d диаграмме, увлажнение, смешивание воздуха двух состояний.

Файлы: 1 файл

Кр.docx

— 707.27 Кб (Скачать файл)

     Решение:

     Для определения потери тепла через  перекрытия в цеху определим удельный тепловой поток (потери тепла через 1 м2 стенки) через термическое сопротивление стенки Rо:

     q = (t1 – t2) / Rо,

     где Rо – сопротивление теплопередаче стены, м2·C/Вт;

         (t1 – t2) – температурный перепад, °С.

     q = (18 – (–10)) / 0,92 = 30,4 Вт/м2

     Теперь  определим общее количество тепла, переданного через перекрытия цеха площадью F за 1 час:

     Q = q·F,

     где F – общая площадь поверхностей стен, м2.

     По условию задачи необходимо взять площадь перекрытий цеха, т.е. потолка:

     F = 96·72 = 6912 м2

     Отсюда  находим теплопотери:

     Q = 30,4·6912 = 210,1 кВт 

     
  1. Построение  процессов изменения состояния  воздуха на i-d диаграмме, увлажнение, смешивание воздуха двух состояний.
 

     Атмосферный воздух можно рассматривать как  смесь двух газов – сухого воздуха и водяного пара. Такая смесь называется влажным воздухом. Сухая часть воздуха по объему состоит из 78,13% азота, 20,90% кислорода, 0,03% углекислого газа и примерно 1% инертных и других газов. С достаточной для технических расчетов точностью можно считать, что влажный воздух подчиняется всем законам смеси идеальных газов. Тогда по закону Дальтона общее давление атмосферного воздуха ро будет равно сумме давлений сухого воздуха рв и водяного пара рп:

       ро = рв + рп

     Воздух, состоящий из сухого воздуха и  перегретого водяного пара, называется ненасыщенным влажным воздухом, а состоящий из сухого воздуха и насыщенного водяного пара — насыщенным влажным воздухом. Давление насыщенного пара pп′′ зависит только от температуры воздуха и может быть найдено по таблицам. Охлаждение насыщенного воздуха сопровождается выпадением конденсата воды. При нагревании насыщенного воздуха водяной пар становится перегретым. Содержание водяного пара измеряется его количеством в граммах на 1 м3 объема воздуха (абсолютная влажность). Масса водяного пара, приходящаяся на 1 кг сухого воздуха, называется влагосодержанием (d). Содержание водяных паров в воздухе зависит от температуры, количества осадков, наличия водоемов, направляющих ветров. Однако каждому значению температуры воздуха соответствует некоторое максимальное содержание пара в единице объема, при котором пар становится насыщенным. Характеристикой влияния влажности воздуха на самочувствие людей является относительная влажность (φ). Относительной влажностью воздуха φ называется отношение абсолютной влажности ненасыщенного воздуха к абсолютной влажности насыщенного воздуха при той же температуре. Относительную влажность можно определить как отношение парциального давления водяного пара рп к парциальному давлению водяного пара насыщенного воздуха рп′′ при той же температуре. Относительную влажность воздуха выражают в процентах или в долях единицы:

     φ =  рп / рп′′, φ = (рп / рп′′)·100%

     Относительная влажность насыщенного воздуха  равна 100%. Влагосодержание и относительная влажность воздуха связаны соотношением:

     d = 0,622·(φ·рп′′ / (Ро рп′′))

     К основным параметрам воздуха относятся  не только температура, относительная влажность, влагосодержание, но и энтальпия (теплосодержание). Энтальпию воздуха i выражают как сумму энтальпий 1 кг сухого воздуха iс.в и энтальпии водяных паров iп, приходящихся на 1 кг сухой части воздуха, т. е.

     i = iс.в + diп = t + (1,89t + 2500)d.

     По формулам приведенным выше можно вычислять основные параметры воздуха, однако для построения процессов изменения состояния воздуха удобнее пользоваться i,d-диаграммой влажного воздуха. На рис. 1 приведена i,d-диаграмма (диаграмма Рамзина).

     

     Рис. 1 – i, d-диаграмма влажного воздуха 

     По  горизонтальной оси отложены значения влагосодержания и нанесена сетка вертикальных линий d = const. Под углом 135° к вертикальной оси диаграммы проведены линии постоянной энтальпии i. На диаграмму нанесены кривые равных значений относительной влажности φ от 0 до 100% и линии постоянных температур в виде прямых под небольшим углом к горизонтальной оси диаграммы. i,d-диаграмма дополнена линией парциальных давлений водяного пара pп. Каждая точка диаграммы характеризуется взаимно согласованными параметрами t, d, i, pп, φ. Точки диаграммы определяют следующие состояния: ненасыщенного воздуха над кривой φ = 100%; насыщенного воздуха на кривой φ = 100%; насыщенного воздуха, содержащего капельки жидкой влаги или льда под кривой φ = 100%. Диаграммой пользуются следующим образом (рис. 2). Пусть известно, что воздух имеет температуру 20°С и относительную влажность 60%. На пересечении изотермы 20°С с линией φ = 60% получим точку А. Тогда по i,d-диаграмме легко прочитать остальные параметры воздуха: iA = 42,2 кДж/кг; dA = 8,8 г/кг; pпА = 1,4 кПа.

     С помощью диаграммы можно определить температуру точки росы воздуха tр. Если воздух охлаждать при d = const, то температура, при которой воздух становится насыщенным, будет tр. Дальнейшее охлаждение сопровождается выпадением влаги. Для точки А температура точки росы tр = 12°С. Точка В называется точкой росы для воздуха, имеющего состояние, характеризуемое точкой А. Важнейшим параметром воздуха является температура по мокрому термометру tм. Это такая температура, которую воздух принимает в результате его адиабатического насыщения (увлажнения). Если взять два термометра, смочить шарик одного термометра и поместить оба термометра в поток воздуха, то температура смоченного термометра будет ниже, чем температура сухого термометра. Объясняется это тем, что между воздухом и мокрым термометром происходит тепло- и массообмен. Оба термометра будут показывать одинаковую температуру, если омывающий их воздух будет насыщенным.

     

     Рис. 2 – определение параметров воздуха  с помощью i, d-диаграммы 

     Таким образом, чтобы найти tм для воздуха состояния точки А, надо из этой точки провести линию i = const до пересечения с линией φ = 100%. Значение tм для точки А будет составлять 15,4°С. Из диаграммы видно, что для воздуха заданных параметров температура по мокрому термометру tм снижается при уменьшении относительной влажности φ воздуха. Основное назначение диаграммы – это изображение процессов изменения состояния воздуха: увлажнения, нагревания, охлаждения и т. д. Изменение состояния воздуха может произойти тогда, когда ему подводится (отводится) тепло Q или влага W, или за счет одновременного воздействия обоих факторов. Процесс изменения состояния воздуха при этом характеризуется значением ε (кДж/кг), называемым тепло-влажностным отношением, или угловым коэффициентом:

     ε = Q/W

     Если  начальные параметры воздуха  различны, а значения ε одинаковы, то линии, характеризующие изменение состояния воздуха, параллельны между собой. Для удобства построения процессов изменения состояния воздуха на i,d-диаграмме нанесены линии углового масштаба в виде пучка лучей, исходящих из центра координат диаграммы (i = 0, t = 0, d = 0) со значением ε от –∞ до +∞. Однако для того, чтобы эти лучи не мешали основным линиям, оставляют только концы лучей на поле диаграммы.

     Практическое  пользование угловым масштабом  сводится к следующему. Пусть известно начальное состояние воздуха в помещении, характеризуемое точкой А. Чтобы выяснить направление процесса с известным ε, нужно на полях i,d-диаграммы найти конец луча с этим значением, соединить его с центром координат и провести из точки А линию, параллельную этому лучу процесса. Таким образом, параметрами состояния влажного воздуха являются t, pп, φ, d, i при заданном общем давлении рб. Основными параметрами, изменяющимися независимо друг от друга, являются t и φ, прочие параметры – производные. Определив значение t и φ, можно найти все остальные параметры воздуха, как аналитическим путем, так и графическим с помощью i,d-диаграммы.

     Часто наружный воздух, подаваемый в помещение, смешивают с внутренним воздухом. Возможны и другие случаи, связанные с перемешиванием масс воздуха разного состояния. Процесс смешения воздуха на i,d-диаграмме изображается прямой, соединяющей точки, отвечающие состоянию смешиваемых масс воздуха. Точка смеси всегда располагается на этой прямой и делит ее на отрезки, обратно пропорциональные смешиваемым порциям воздуха. Если смешивать воздух состояния 1 (рис. 3) в количестве G с воздухом состояния 2 в количестве nG, то точка смеси 3 разделит отрезок 1–2 или его проекцию на части 1–3 и 3–2. Таким образом, чтобы найти точку смеси, нужно прямую 12 или ее проекцию разделить на (n + 1) частей и отложить от точки 1 одну часть, оставив n частей до точки 2. Такое построение определит положение точки смеси. Возможен случай, когда точка смеси окажется в области ниже линии φ = 100%. Это значит, что при смешении будет образовываться туман (рис. 4). Снижение влагосодержания воздуха за счет конденсации влаги будет равно Δd.

     

     Рис. 3 – i, d-диаграмма с режимом смешения двух масс воздуха различного состояния.

     

     Рис. 4 – i, d-диаграмма с режимом смешения двух масс воздуха при расположении точки смеси φ = 100%. 

     Увлажнение  воздуха осуществляют путем непосредственного подмешивания к воздуху водяного пара или путем разбрызгивания воды в камерах орошения при адиабатическом процессе. Тонкий слой воды или ее капли при контакте с воздухом приобретают температуру, равную температуре мокрого термометра. При контакте воздуха с водой, имеющей такую температуру, происходит процесс адиабатного (изоэнтальпийного) увлажнения воздуха, энтальпия воздуха остается практически неизменной. В i,d-диаграмме этот процесс можно проследить по линиям i = const (слева – вниз – направо) (рис. 5). Если воздух состояния 1 (рис. 5) находится в контакте с водой, имеющей температуру мокрого термометра tм1, то его состояние изменится по линии i1 = const, например, до точки 2 с ассимиляцией Δd1 граммов влаги на один килограмм сухой части воздуха. Предельное состояние воздуха в этом процессе соответствует его насыщению влагой (точка 3, отвечающая пересечению луча процесса с кривой φ = 100%). При кондиционировании часто используют адиабатное увлажнение воздуха рециркуляционной водой. Для этого в оросительной камере разбрызгивают воду, имеющую температуру, близкую к температуре мокрого термометра. При этом небольшая часть воды (до 1÷3%) испаряется и увлажняет воздух, проходящий через камеру. Реальный процесс несколько отклоняется вверх от линии i = const, но это отклонение практически незначительно. Если в воздух подать пар, имеющий ту же температуру, что и воздух по «сухому» термометру, то он будет увлажняться, не изменяя своей температуры. Изотермический процесс увлажнения паром в i,d-диаграмме изображается линией 1–4 (рис. 5). После увлажнения состояние воздуха может соответствовать произвольной точке на этой изотерме, например точке 4 при ассимиляции Δd2 влаги. Предельное состояние в этом процессе соответствует точке 5 пересечения линии t1 с линией φ = 100%.

     При кондиционировании воздуха используют процесс увлажнения воздуха острым паром, который обычно имеет температуру более 100°С, т. е. значительно отличающуюся от температуры воздуха. Однако в связи с тем что содержание явного тепла в паре, ассимилируемом воздухом, незначительно, луч процесса идет с небольшим отклонением вверх от изотермы. Изменение энтальпии воздуха в основном определяется теплотой парообразования водяного пара, при этом температура воздуха немного повышается. На практике принимают процесс увлажнения паром, протекающий по линии постоянной температуры.

     

      

     Рис. 5 – i, d-диаграмма с режимами изоэнтальпийного и изотермического увлажнения воздуха. 

     
  1. Центробежные  вентиляторы. Устройство, принцип работы, область применения.
 

     Вентиляция  — это совокупность технических средств и мероприятий, необходимых для поддержания в помещении нормального воздухообмена.

     Для устранения проблем, связанных с  опасностью для здоровья людей, влажный, испорченный воздух должен выводиться наружу и заменяться свежим. Вновь поступающий воздух должен проникать во все комнаты дома, так, чтобы обеспечивалось его полное и эффективное проветривание. Дыхание каждого человека и обычное испарение влаги сквозь поры на коже может добавлять в воздух до 4,3 литров пара в день. Там, где исчезает ветерок свежести, помочь владельцам домов защитить здоровье близких, сохранить и даже увеличить свои денежные вложения могут высокоэффективные системы вентиляции. В холодное время года, когда окна плотно закрыты на всю зиму, приточно-вытяжные системы вентиляции помогут обеспечить жилые помещения воздухом очень высокого качества. Эти системы специально предназначены для быстрого удаления влаги, несвежего воздуха, всякого рода загрязнителей прямо от источников их возникновения через разветвленную вентиляционную сеть. Кроме того, эти системы вентиляции через разветвленную систему забора и распределения раздают свежий воздух по всему дому.

     В механической вентиляции необходимый  для ее функционирования перепад давления создается вентиляторами. Это позволяет расширить возможный диапазон действия вентиляционной системы за счет подбора необходимого перепада давления в системе. Применение вентиляторов расширяет возможности вентиляционных систем, приближая их к более современным системам жизнеобеспечения — системам кондиционирования, т.е. позволяет применять в системах агрегаты и системы, позволяющие решать сложные совокупные задачи подготовки среды в помещении, наилучшим образом удовлетворяющие санитарно — гигиеническим требованиям. Это устройства очистки, увлажнения или нагрева воздуха, подаваемого в помещение.

     Вентиляторы, используемые в вентиляционных системах, могут быть подразделены на: низконапорные — до 103 Па; средненапорные — до 3 103 Па; высоконапорные — до 15 104 Па.

     По  конструктивному исполнению вентиляторы  делятся на центробежные (рис. 6) и осевые. На кровле здания устанавливаются специальные крышные вентиляторы. Существуют центробежные вентиляторы одностороннего и двухстороннего всасывания. По направлению вращения центробежные вентиляторы делятся на вентиляторы правого и левого вращения. Вентиляторами правого вращения называются те, у которых колесо вращается по часовой стрелке, если смотреть со стороны всасывания, а вентиляторами левого вращения — те, у которых колесо вращается против часовой стрелки.

Информация о работе Контрольная работа "Теплотехника"