Законы распределения случайной величины

Автор работы: Пользователь скрыл имя, 05 Февраля 2015 в 11:17, творческая работа

Описание работы

Переменная величина называется случайной, если в результате опыта она может принимать действительные значения с определёнными вероятностями. Наиболее полной, исчерпывающей характеристикой случайной величины является закон распределения. Закон распределения – функция (таблица, график, формула), позволяющая определять вероятность того, что случайная величина Х принимает определенное значение хi или попадает в некоторый интервал. Если случайная величина имеет данный закон распределения, то говорят, что она распределена по этому закону или подчиняется этому закону распределения.

Файлы: 1 файл

Template (2).doc

— 233.50 Кб (Скачать файл)

Основные данные о работе

Версия шаблона

2.1

ЦДОР

Самарский

Вид работы

Творческое эссе

Название дисциплины

Математические методы в психологии

Тема

Законы распределения случайной величины

Фамилия

Авдеева

Имя

Ольга

Отчество

Александровна

№ контракта

03908110701001


 

 

Основная часть

Глава основной части

Переменная величина называется случайной, если в результате опыта она может принимать действительные значения с определёнными вероятностями. Наиболее полной, исчерпывающей характеристикой случайной величины является закон распределения. Закон распределения – функция (таблица, график, формула), позволяющая определять вероятность того, что случайная величина Х принимает определенное значение хi или попадает в некоторый интервал. Если случайная величина имеет данный закон распределения, то говорят, что она распределена по этому закону или подчиняется этому закону распределения.

Случайная величина Х называется дискретной, если существует такая неотрицательная функция

 

которая ставит в соответствие значению хi переменной Х вероятность рi , с которой она принимает это значение.

Случайная величина Х называется непрерывной, если для любых a < b существует такая неотрицательная функция f ( x ), что

 

Функция f ( x ) называется плотностью распределения непрерывной случайной величины. Вероятность того, что случайная величина Х (дискретная или непрерывная) принимает значение, меньшее х, называется функцией распределения случайной величины Х и обозначается F ( x ) :

Функция распределения является универсальным видом закона распределения, пригодным для любой случайной величины.

Общие свойства функции распределения:

Кроме этого универсального, существуют также частные виды законов распределения: ряд распределения (только для дискретных случайных величин) и плотность распределения (только для непрерывных случайных величин).

Основные свойства плотности распределения:

 

Каждый закон распределения – это некоторая функция, полностью описывающая случайную величину с вероятностной точки зрения. На практике о распределении вероятностей случайной величины Х часто приходится судить только по результатам испытаний. Повторяя испытания, будем каждый раз регистрировать, произошло ли интересующее нас случайное событие А, или нет. Относительной частотой (или просто частотой) случайного события А называется отношение числа nA появлений этого события к общему числу n проведенных испытаний. При этом мы принимаем, что относительные частоты случайных событий близки к их вероятностям. Это тем более верно, чем больше число проведенных опытов. При этом частоты, как и вероятности, следует относить не к отдельным значениям случайной величины, а к интервалам. Это значит, что весь диапазон возможных значений случайной величины Х надо разбить на интервалы. Проводя серии испытаний, дающих эмпирические значения величины Х, надо фиксировать числа nx попаданий результатов в каждый интервал. При большом числе испытаний n отношение nx / n (частоты попадания в интервалы) должны быть близки к вероятностям попадания в эти интервалы. Зависимость частот nx / n от интервалов определяет эмпирическое распределение вероятностей случайной величины Х, графическое представление которой называется гистограммой (рис. 1).

Рис. 1. Гистограмма и выравнивающая плотность распределения

Для построения гистограммы по оси абсцисс откладывают интервалы равной длины, на которые разбивается весь диапазон возможных значений случайной величины Х , а по оси ординат откладывают частоты nx / n. Тогда высота каждого столбика гистограммы равна соответствующей частоте. Таким образом, получается приближенное представление закона распределения вероятностей для случайной величины Х в виде ступенчатой функции, аппроксимация (выравнивание) которой некоторой кривой f (x) даст плотность распределения. Однако, часто бывает достаточно указать только отдельные числовые параметры, характеризующие основные свойства распределения. Эти числа называются числовыми характеристиками случайной величины.

Биномиальное распределение (дискретное)

X - количество «успехов» в последовательности из независимых случайных экспериментов, таких что вероятность «успеха» в каждом из них равна . .

Закон распределения имеет вид:

 

0

1

…..

k

…..

 

 


Здесь вероятности находятся по формуле Бернулли:

Характеристики: , , Примеры многоугольников распределения для и различных вероятностей:

Пуассоновское распределение (дискретное)

Распределение Пуассона моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.При условии закон распределения Пуассона является предельным случаем биномиального закона. Так как при этом вероятность события A в каждом испытании мала, то закон распределения Пуассона называют часто законом редких явлений.

Ряд распределения:

 

0

1

…..

k

…..

…..

…..


Вероятности вычисляются по формуле Пуассона: .

Числовые характеристики: , ,

Разные многоугольники распределения при .

 

Показательное распределение (непрерывное)

Экспоненциальное или показательное распределение — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.

Плотность распределения:

Где .

Числовые характеристики: , ,

Плотность распределения при различных значениях .

 

 Равномерное распределение (непрерывное)

Равномерный закон распределения используется при анализе ошибок округления при проведении числовых расчётов (например, ошибка округления числа до целого распределена равномерно на отрезке [-0,5; 0,5]), в ряде задач массового обслуживания, при статистическом моделировании наблюдений, подчинённых заданному распределению.

Плотность распределения:

Числовые характеристики: , ,

График плотности вероятностей:

Нормальное распределение или распределение Гаусса (непрерывное). Нормальное распределение, также называемое распределением Гаусса, – распределение вероятностей, которое играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех. Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений в природе чаще всего встречается именно нормальное распределение — отсюда и произошло одно из его названий.

Плотность распределения: Нормальный закон распределения случайной величины с параметрами и называется стандартным или нормированным, а соответствующая нормальная кривая - стандартной или нормированной. Функция Лапласа . Вероятность отклонения нормально распределенной случайной величины на величину от математического ожидания (по модулю).

.

Список использованных интернет-ресурсов

№ п/п

Наименование интернет-ресурса

Ссылка на конкретную используемую страницу интернет-ресурса

1

matburo.ru

http://www.matburo.ru/tv_spr_sub.php?p=3

2

simumath.net

http://www.simumath.net/library/book.html?code=Mat_Stat_random_values

3

kemsu.ru

http://umk.portal.kemsu.ru/uch-mathematics/papers/posobie/r4-3.htm#top


 

 

 

 

 


 



Информация о работе Законы распределения случайной величины