Матрицы и линейные операции над ними. Умножение матриц

Автор работы: Пользователь скрыл имя, 27 Февраля 2011 в 18:51, шпаргалка

Описание работы

Матрицей называется прямоугольная таблица чисел, числа из которых состоит матрица называют её элементами.

Файлы: 1 файл

шпора(1-й сем).doc

— 3.55 Мб (Скачать файл)

Аналогичным образом  определяется левосторонний предел.

Нарушение условий  непрерывности для ф-ии y=f(x), может происходить как в отдельных точках, так и в точках образующих одну или несколько линий. 

35. Задачи приводящие  к понятию производной.  Производная ф-ии  в точке. Геометрический  смысл производной.  У-ие касательной  и нормали к графику ф-ий.

Пусть на отр. [a;b] определена ф-ия y=f(x), х0Î(a;b), рассмотрим  (1)

Пусть существует конечное значение lim (1), - это число называют производной ф-ии y=f(x), х=х0.Обозначается (f’(x), , )

При изменении  т. х0 будет манятся значение предела, таким образом можно рассмотреть ф-ию ,

, поэтому  , .

Уравнение касательной:

36. Дифференциал. Пусть на отрезке (a; b) определена функция y = f(x), которая имеет в точке Xo, Xo Î (a; b), тогда принадлежит функции Δf(Xo) = f(Xo + ΔX) – f(Xo) =  f ’(Xo)ΔX + 0(ΔX) – 1). Из 1) следует, что принадлежит функции можно представить в виде суммы двух слагаемых. Первые из них являются линейные функции, относят ΔX, а второе является величиной ¥ < более высокого порядка, чем DX. Рассмотрим схему о возможности предоставления приделу произвольной функции. y = f(x) в виде суммы двух слагаемых. Одно из которых является линейным – относительно превращения независимой переменной, а другая является ¥ < более высокого порядка, т. е. f(Xo + DX) – f(Xo) = A + DX + 0(DX) - 2). Первое слагаемое A´ DX – называется главной линейной частью превращения. Опр. Главная линейная часть превращения называется дифференциалом и обозначается следующим образом dy, df(Xo). Разделим левую и правую часть 2) на DX и перейдем к пределу при DX ® 0. . - 3). Если для функции y = f(x) выполняется равенство 2), то существует , т. е. A = f ’(Xo). Главная линейная часть превращения функции имеет вид f ‘ (Xo)DX. Функция, для которой можно написать разложение 2) называется дифференцируемой. Из 3) следует, что если функция является дифференцируемой, то она имеет конечную производную. Верно и обратное утверждение, если функция y = f(x) имеет конечную производную, то она является дифференцируемой. Это следует из равенства 1). Для того, что бы функция была дифференцируемой необходимо и достаточно, чтобы она имела конечную производную. Обозначим превращение независимой переменой через dx = DX, тогда дифференциал функции можно записать в виде dy = d ´ f(x) = f(x)dx. В этом случае равенство 1) можно переписать в виде Df(Xo) = df(Xo) – 0(DX) – 4). Из 4) следует, что если функция y = f(x) является дифференцируемой в Xo, то она является непрерывной в этой точке.

37. Геометрический смысл  дифференциала.  Пусть задана функция g = f(x), проведем через точку с координатами (Xo; f(Xo)) касательную. Уравнение касательной имеет вид .  Подставим вместо x значение Xo + DX, тогда получим . Дифференциал df(Xo) равен превращению ординаты касательной, при изменении x от Xo до DX + Xo.

38. Непрерывность.  Предел функции. Число A называется пределом функции z = f(x; y) при стремлении точки к точке P(a,b), если для любого e > 0 существует такое d > 0, что при 0 < r < d, где - расстояние между точками P и P’, имеет место равенство . В этом случае пишут: . Непрерывность и точки разрыва. Функция z = f(x, y) называется непрерывной в точке P(a, b), если . Функция, непрерывная во всех точках некоторой области, называется непрерывной в этой области. Нарушение условий непрерывности для функции f(x, y) может происходить как в отдельных точках (изолированная точка разрыва), так и в точках, образующих одну или несколько линий (линий разрыва), а иногда и более сложные геометрические образы.  
 

39. Правила вычисления  производных.

    0
 

40. Производные от  элементарных ф-ий.

а) f(x)=xn,

б) f(x)=sinx,

в) y=ax ,

43. Производные высших  порядков. Пусть на отрезке (a; b) определена функция    y = f(x). Предположим, что эта функция имеет производную на отрезке (a; b). В свою очередь f’(x) является функцией, от переменной величены x, поэтому можно рассмотреть задачу по вычислению производной от производной функции. Если эта производная существует, то ее называют второй производной и обозначим следующим образом: f “ (x) или . Аналогичным образом определим третью производную и т.д. Производная порядка n обозначим   Т.к. (f(x) + g(x))’ =   f’(x) +g’(x), то следует Аналогичным образом:

Информация о работе Матрицы и линейные операции над ними. Умножение матриц