Доказательства теоремы Пифагора

Автор работы: Пользователь скрыл имя, 17 Ноября 2010 в 00:04, Не определен

Описание работы

Доказательства, основанные на использовании понятия равновеликости фигур

Файлы: 1 файл

ДОКАЗАТЕЛЬСТВА ТЕОРЕМЫ ПИФАГОРА.doc

— 248.50 Кб (Скачать файл)

 

Доказательства  методом дополнения 

Доказательство первое. 

Наряду с доказательствами методом сложения можно привести примеры доказательств при помощи вычитания, называемых также доказательствами методом дополнения. Общая идея таких  доказательств заключается в  следующем. 

От двух равных площадей нужно отнять равновеликие части так, чтобы в одном случае остались два квадрата, построенные на катетах, а в другом- квадрат, построенный на гипотенузе. Ведь если в равенствах  

В-А=С и В111 

часть А равновелика  части А1, а часть В равновелика В1, то части С и С1 также равновелики.  

                                                                                       

 Поясним этот  метод на примере. На рис.  к обычной пифагоровой фигуре  приставлены сверху и снизу  треугольники 2 и 3, равные исходному  треугольнику 1. Прямая DG обязательно пройдет через C. Заметим теперь (далее мы это докажем), что шестиугольники DABGFE и CAJKHB равновелики. Если мы от первого из них отнимем треугольники 1 и 2, то останутся квадраты, построенные на катетах, а если от второго шестиугольника отнимем равные треугольники 1 и 3, то останется квадрат,построенный на гипотенузе. Отсюда вытекает, что квадрат,  построенный на гипотенузе, равновелик сумме квадратов,построенных на катетах. 

Остается доказать, что наши шестиугольники равновелики. Заметим, что прямая DG делит верхний шестиугольник на равновеликие части; то же можно сказать о прямой CK и нижнем шестиугольнике. Повернем четырехугольник DABG, составляющий половину шестиугольника DABGFE, вокруг точки А по часовой стрелке на угол 90; тогда он совпадет с четырехугольником CAJK, составляющим половину шестиугольника CAJKHB. Поэтому шестиугольники DABGFE и CAJKHB равновелики. 

Другое доказательство методом вычитания. 

Познакомимся  с другим доказательством методом  вычитания. Знакомый нам чертеж теоремы Пифагора заключим в прямоугольную рамку, направления сторон которой совпадают с направлениями катетов треугольника. Продолжим некоторые из отрезков фигуры так, как указано на рисунке, при этом прямоугольник распадается на несколько треугольников, прямоугольников и квадратов. Выбросим из прямоугольника сначала несколько частей так чтобы остался лишь квадрат, построенный на гипотенузе. Эти части следующие:

1.     треугольники 1, 2, 3, 4;

2.     прямоугольник 5;

3.     прямоугольник 6 и квадрат 8;

4.     прямоугольник 7 и квадрат 9;

Затем выбросим из прямоугольника части так, чтобы  остались только квадраты, построенные  на кататах. Этими частями будут:

1.     прямоугольники 6 и 7;

2.     прямоугольник 5;

3.     прямоугольник 1(заштрихован);

4.     прямоугольник 2(заштрихован);

Нам осталось лишь показать, что отнятые части равновелики. Это легко видеть в силу расположения фигур. Из рисунка ясно, что:

1.     прямоугольник 5 равновелик самому  себе;

2.     четыре треугольника 1,2,3,4 равновелики двум прямоугольникам 6 и 7;

3.     прямоугольник 6 и квадрат 8, взятые  вместе, равновелики прямоугольнику 1 (заштрихован);

4.     прямоугольник 7 вместе с квадратом  9 равновелики прямоугольнику 2(заштрихован);

Доказательство  закончено.         

Другие доказательства 

Доказательство  Евклида 

Это доказательство было приведено Евклидом в его "Началах". По свидетельству Прокла (Византия), оно придумано самим Евклидом. Доказательство Евклида приведено  в предложении 47 первой книги "Начал".

На гипотенузе и катетах прямоугольного треугольника АВС строятся соответствующие квадраты и доказывается, что прямоугольник BJLD равновелик квадрату ABFH, а прямоугольник ICEL - квадрату АСКС. Тогда сумма квадратов на катетах будет равна квадрату на гипотенузе.

В самом деле, треугольники ABD и BFC равны по двум сторонам и углу между ними:

FB = AB, BC = BD

РFBC = d + РABC = РABD

Но 

SABD = 1/2 S BJLD,

так как у  треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично

SFBC=1\2S ABFH

(BF-общее основание, АВ-общая высота). Отсюда, учитывая, что

SABD=SFBC,

имеем

SBJLD=SABFH.

Аналогично, используя  равенство треугольников ВСК  и АСЕ, доказывается, что 

SJCEL=SACKG.

Итак,

SABFH+SACKG= SBJLD+SJCEL= SBCED,

 что и требовалось  доказать.

Доказательство Хоукинсa.

Приведем еще  одно доказательство, которое имеет  вычислительный характер, однако сильно отличается от всех предыдущих. Оно  опубликовано англичанином Хоукинсом  в 1909 году; было ли оно известно до этого- трудно сказать.

Прямоугольный треугольник ABC с прямым углом C повернем на 90° так, чтобы он занял положение A'CB'. Продолжим гипотенузу A'В' за точку A' до пересечения с линией АВ в точке D. Отрезок В'D будет высотой треугольника В'АВ. Рассмотрим теперь заштрихованный четырехугольник A'АВ'В . Его можно разложить на два равнобедренных треугольника САA' и СВВ' (или на два треугольника A'В'А и A'В'В).

SCAA'=b²/2          SCBB'=a²/2        SA'AB'B=(a²+b²)/2

 

Треугольники A'В'А  и A'В'В имеют общее основание  с и высоты DA и DB, поэтому :

                     SA'AB'B=c*DA/2+ c*DB/2=c(DA+DB)/2=c²/2

Сравнивая два  полученных выражения для площади, получим:

a²+b²=c²

Теорема доказана.

Информация о работе Доказательства теоремы Пифагора