Загрязнение атмосферы

Автор работы: Пользователь скрыл имя, 25 Ноября 2015 в 20:01, реферат

Описание работы

Опасность непредсказуемых изменений в стабильном состоянии биосферы, к которому исторически приспособлены природные сообщества и виды, включая самого человека, столь велика при сохранении привычных способов хозяйствования, что перед нынешними поколениями людей, населяющими Землю, возникла задача экстренного усовершенствования всех сторон своей жизни в соответствии с необходимостью сохранения сложившегося круговорота веществ и энергии в биосфере. Кроме того, повсеместное загрязнение окружающей нас среды разнообразными веществами, подчас совершенно чуждыми для нормального существования организма людей, представляет серьезную опасность для нашего здоровья и благополучия будущих поколений.

Содержание работы

Введение
Загрязнение атмосферы
Источники загрязнения атмосферы
Химическое загрязнение атмосферы
Аэрозольное загрязнение атмосферы
Фотохимический туман
Озоновый слой
Мероприятия по борьбе с выбросами автотранспорта
Заключение
Список использованной литературы

Файлы: 1 файл

Документ Microsoft Office Word (6).docx

— 54.52 Кб (Скачать файл)

Выявлена тенденция совместного накопления в твердых взвешенных частицах приземной атмосферы Европейской России свинца и олова; хрома, кобальта и никеля; стронция, фосфора, скандия, редких земель и кальция; бериллия, олова, ниобия, вольфрама и молибдена; лития, бериллия и галлия; бария, цинка, марганца и меди. Высокие концентрации в снеговой пыли тяжелых металлов обусловлены как присутствием их минеральных фаз, образовавшихся при сжигании угля, мазута и других видов топлива, так и сорбцией сажей, глинистыми частицами газообразных соединений типа галогенидов олова.

Время «жизни» газов и аэрозолей в атмосфере колеблется в очень широком диапазоне (от 1 – 3 минут до нескольких месяцев) и зависит в основном от их химической устойчивости размера (для аэрозолей) и присутствия реакционно-способных компонентов (озон, пероксид водорода и др.).

Оценка и тем более прогноз состояния приземной атмосферы являются очень сложной проблемой. В настоящее время ее состояние оценивается главным образом по нормативному подходу. Величины ПДК токсических химических веществ и другие нормативные показатели качества воздуха приведены во многих справочниках и руководствах. В таком руководстве для Европы кроме токсичности загрязняющих веществ (канцерогенное, мутагенное, аллергенное и другие воздействия) учитываются их распространенность и способность к аккумуляции в организме человека и пищевой цепи. Недостатки нормативного подхода – ненадежность принятых значений ПДК и других показателей из-за слабой разработанности их эмпирической наблюдательной базы, отсутствие учета совместного воздействия загрязнителей и резких изменений состояния приземного слоя атмосферы во времени и пространстве. Стационарных постов наблюдения за воздушным бассейном мало, и они не позволяют адекватно оценить его состояние в крупных промышленно – урбанизированных центрах. В качестве индикаторов химического состава приземной атмосферы можно использовать хвою, лишайники, мхи. На начальном этапе выявления очагов радиоактивного загрязнения, связанных с чернобыльской аварией, изучалась хвоя сосны, обладающая способностью накапливать радионуклиды, находящиеся в воздухе. Широко известно покраснение игл хвойных деревьев в периоды смогов в городах.

Наиболее чутким и надежным индикатором состояния приземной атмосферы является снеговой покров, депонирующий загрязняющие вещества за сравнительно длительный период времени и позволяющий установить местоположение источников пылегазовыбросов по комплексу показателей. В снеговых выпадениях фиксируются загрязнители, которые не улавливаются прямыми измерениями или расчетными данными по пылегазовыбросам.

К перспективным направлениям оценки состояния приземной атмосферы крупных промышленно – урбанизированных территорий относится многоканальное дистанционное зондирование. Преимущество этого метода заключается в способности быстро, неоднократно и в «одном ключе» охарактеризовать большие площади. К настоящему времени разработаны способы оценки содержания в атмосфере аэрозолей. Развитие научно-технического прогресса позволяет надеяться на выработку таких способов и в отношении других загрязняющих веществ.

Прогноз состояния приземной атмосферы осуществляется по комплексным данным. К ним прежде всего относятся результаты мониторинговых наблюдений, закономерности миграции и трансформации загрязняющих веществ в атмосфере, особенности антропогенных и природных процессов загрязнения воздушного бассейна изучаемой территории, влияние метеопараметров, рельефа и других факторов на распределение загрязнителей в окружающей среде. Для этого в отношении конкретного региона разрабатываются эвристичные модели изменения приземной атмосферы во времени и пространстве. Наибольшие успехи в решении этой сложной проблемы достигнуты для районов расположения АЭС. Конечный результат применения таких моделей – количественная оценка риска загрязнения воздуха и оценка его приемлемости с социально-экономической точки зрения.

 

 

 

 

 

 

 

               Химическое загрязнение атмосферы

Под загрязнением атмосферы следует понимать изменение ее состава при поступлении примесей естественного или антропогенного происхождения. Вещества-загрязнители бывают трех видов: газы, пыль и аэрозоли. К последним относятся диспергированные твердые частицы, выбрасываемые в атмосферу и находящиеся в ней длительное время во взвешенном состоянии.

К основным загрязнителям атмосферы относятся углекислый газ, оксид углерода, диоксиды серы и азота, а также малые газовые составляющие, способные оказывать влияние на температурный режим тропосферы: диоксид азота, галогенуглероды (фреоны), метан и тропосферный озон.

Основной вклад в высокий уровень загрязнения воздуха вносят предприятия черной и цветной металлургии, химии и нефтехимии, стройиндустрии, энергетики, целлюлозно-бумажной промышленности, а в некоторых городах и котельные.

Источники загрязнений - теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ, металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух окислы азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов.

Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом, в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы, образуются другие вторичные признаки. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 170% ежегодно добываемого твердого и жидкого топлива.

 

 

 

            Аэрозольное загрязнение атмосферы

Из естественных и антропогенных источников в атмосферу ежегодно поступают сотни миллионов тонн аэрозолей. Аэрозоли - это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Аэрозоли разделяются на первичные (выбрасываются из источников загрязнения), вторичные (образуются в атмосфере), летучие (переносятся на далекие расстояния) и нелетучие (отлагаются на поверхности вблизи зон пылегазовыбросов). Устойчивые и тонкодисперсные летучие аэрозоли - (кадмий, ртуть, сурьма, йод-131 и др.) имеют тенденцию накапливаться в низинах, заливах и других понижениях рельефа, в меньшей степени на водоразделах.

К естественным источникам относят пыльные бури, вулканические извержения и лесные пожары. Газообразные выбросы (например, SO2) приводят к образованию в атмосфере аэрозолей. Несмотря на то, что время пребывания в тропосфере аэрозолей исчисляется несколькими сутками, они могут вызвать снижение средней температуры воздуха у земной поверхности на 0,1 – 0,3С0. Не меньшую опасность для атмосферы и биосферы представляют аэрозоли антропогенного происхождения, образующиеся при сжигании топлива либо содержащиеся в промышленных выбросах.

Средний размер аэрозольных частиц составляет 1-5 мкм. В атмосферу Земли ежегодно поступает около 1 куб. км пылевидных частиц искусственного происхождения. Большое количество пылевых частиц образуется также в ходе производственной деятельности людей.

Основными источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, которые потребляют уголь высокой зольности, обогатительные фабрики, металлургические. цементные, магнезитовые и сажевые заводы. Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже - оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест. Они содержатся в выбросах предприятий теплоэнергетики, черной и цветной металлургии, стройматериалов, а также автомобильного транспорта. Пыль, осаждающаяся в индустриальных районах, содержит до 20%оксида железа, 15% силикатов и 5% сажи, а также примеси различных металлов (свинец, ванадий, молибден, мышьяк, сурьма и т.д.).

Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Она образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях. Постоянными источниками аэрозольного загрязнения являются промышленные отвалы - искусственные насыпи из переотложенного материала, преимущественно вскрышных пород,  образуемых при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности, ТЭС. Источником пыли и ядовитых газов служат массовые взрывные работы. Так, в результате одного среднего по массе взрыва ( 250-300 тонн взрывчатых веществ) в атмосферу выбрасывается около 2 тыс. куб. м условного оксида углерода и более 150 т. пыли. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств - измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов всегда сопровождается выбросами пыли и других вредных веществ в атмосферу.

Концентрация аэрозолей меняется в весьма широких пределах: от 10 мг/м3 в чистой атмосфере до 2.10 мг/м3 в индустриальных районах. Концентрация аэрозолей в индустриальных районах и крупных городах с интенсивным автомобильным движением в сотни раз выше, чем в сельской местности. Среди аэрозолей антропогенного происхождения особую опасность для биосферы представляет свинец, концентрация которого изменяется от 0,000001 мг/м3 для незаселенных районов до 0,0001 мг/м3 для селитебных территорий. В городах концентрация свинца значительно выше – от 0,001 до 0,03 мг/м3.

Аэрозоли загрязняют не только атмосферу, но и стратосферу, оказывая влияние на ее спектральные характеристики и вызывая опасность повреждения озонового слоя. Непосредственно в стратосферу аэрозоли поступают с выбросами сверхзвуковых самолетов, однако имеются аэрозоли и газы, диффундирующие в стратосфере.

Основной аэрозоль атмосферы – сернистый ангидрид (SO2), несмотря на большие масштабы его выбросов в атмосферу, является короткоживущим газом (4 – 5 суток). По современным оценкам, на больших высотах выхлопные газы авиационных двигателей могут увеличить естественный фон SO2  на 20%. Хотя эта цифра невелика, повышение интенсивности полетов уже в ХХ веке может сказаться на альбедо земной поверхности в сторону его увеличения. Ежегодное поступление сернистого газа в атмосферу только вследствие промышленных выбросов оценивается почти в 150 млн. т. В отличие от углекислого газа сернистый ангидрид является весьма нестойким химическим соединением. Под воздействием коротковолновой солнечной радиации он быстро превращается в серный ангидрид и в контакте с водяным паром переводится в сернистую кислоту. В загрязненной атмосфере, содержащей диоксид азота, сернистый ангидрид быстро переводится в серную кислоту, которая, соединяясь с капельками воды, образует так называемые кислотные дожди.

К атмосферным загрязнителям относятся углеводороды - насыщенные и ненасыщенные, включающие от 1 до 3 атомов углерода. Они подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией. В результате этих реакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы часто в виде аэрозольных частиц. При некоторых погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха. Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия - расположения слоя более холодного воздуха под теплым, что препятствует воздушным массам и задерживает перенос примесей вверх. В результате вредные выбросы сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее неизвестного в природе фотохимического тумана.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Фотохимический туман (смог)

Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличие в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей; интенсивная солнечная радиация и безветрие или очень слабый обмен воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ. Такие условия создаются чаще в июне-сентябре и реже зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота - в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количестве озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги - нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной системы и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.

Информация о работе Загрязнение атмосферы