Влияние парникового эффекта на изменение климата земли

Автор работы: Пользователь скрыл имя, 14 Ноября 2009 в 17:32, Не определен

Описание работы

Современный мир отличается необычайной сложностью и противоречивостью событий, он пронизан противоборствующими тенденциями, полон сложнейших альтернатив, тревог и надежд.

Файлы: 1 файл

Копия экология сегодня.doc

— 131.00 Кб (Скачать файл)

     У Дж. Форрестера действительно оказались  последователи. Появился первый глобальный прогноз Римского клуба под названием  “Пределы роста”, авторы которого под  руководством Д. Медоуза построили  динамичную модель мира, куда в качестве исходных данных включили население, капиталовложения (фонды), земное пространство, загрязнение, использование природных ресурсов, посчитав эти компоненты основными в динамике изменения мировой системы. Выводы авторов сводились к следующему: если сохранятся существовавшие на конец 1960-х годов тенденции и темпы развития экономики и роста народонаселения, то человечество неминуемо должно прийти к глобальной экологической катастрофе. “Апокалипсис” предрекался примерно на 2100 год. А отсюда и рекомендации: немедленно свести к нулю рост народонаселения и производства. Однако эти предложения авторов модели нереальны, неприемлемы, да и просто утопичными, но дали пищу для развития антинаучных и антигуманных теорий, способствовали резкой вспышке всякого рода неомальтузианских и геополитических рассуждений, уводящих от реальных путей преодоления экокризисных явлений.

     Не  случайно уже следующая модель М. Месаровича и Э. Пестеля - “Человечество  у поворотного пункта” - была значительно  более обоснованной. И дело не только в том, что в ней комплексная взаимосвязь экономических, социальных и политических процессов, состояние окружающей Среды и природных ресурсов представлены как сложная многоуровневая иерархическая система. Авторы попытались посмотреть на мир не как на нечто аморфно-целое, а как на систему отличающихся друг от друга, но взаимодействующих регионов. Выводы авторов этой модели более оптимистичны, чем предыдущей. Однако “прогресс” Месаровича и Пестеля можно свести к тому, что они, отвергая неизбежность “единой” глобальной экологической катастрофы, будущее человечества видят в длительных, разнообразных кризисах - экологических, энергетических, продовольственных, сырьевых, демографических, могущих постепенно охватить всю планету, если общество не примет их рекомендации перехода к “органическому росту” - сбалансированному развитию всех частей планетарной системы. Но это также далеко от реальностей, которыми полон современный мир.

     Постепенно  модели становились все более  конкретными, а проблемы - более цельными. К настоящему времени методологические принципы, техника, методика современного глобального прогнозирования неизмеримо усложнились по сравнению с исторически первыми и простейшими методами оценки экологической емкости Земли. В новых условиях обострившихся потребностей в нахождении эффективных способов целенаправленного воздействия на процессы взаимодействия человека и биосферы встают задачи разработки конкретных прогнозов будущего человечества, формирования конкретных научно обоснованных представлений об основных возможных тенденциях развития человечества на ближайшие 50 - 100 лет. Существенно то, что результаты такого прогнозирования спектра возможностей “должны быть сформулированы не только на языке теории, но и на языке управленческой практики”. Поэтому “насущная необходимость” в создании системы глобального прогнозирования с самого начала должна осмысливаться с учетом мировой практики управления сверхсложными системами и соответственно в качестве необходимости создания “человеко-машинной системы”, т.е. автоматизированной информационно-прогнозирующей системы. Основная задача автоматизированного компьютерного прогнозирования взаимодействия человека и биосферы состоит в том, чтобы обеспечить наиболее оптимальные условия объединения усилий экологов, социологов, экономистов и других специалистов “для оценки и выбора возможных вариантов международных решений” на междисциплинарном уровне. Известный кибернетик У. Р. Эшби писал: “Ценность системного подхода заключается в том, что он применим для анализа объектов особой сложности, понимание которых с помощью традиционных методов исследования затруднено, а иногда и невозможно. Системный подход, основанный на компьютерах, отвергает смутные интуитивные идеи, извлекаемые из обращения с такими простыми системами, как будильник или велосипед, и дает нам надежду на создание эффективных методов для изучения систем чрезвычайной внутренней сложности и управления ими”.

     Само  создание систем автоматизированного  прогнозирования, отвечающих современным  требованиям методов управления, в свою очередь превратилось в одну из важнейших научно-технических проблем, перспективы решения которой непосредственно связаны с организацией междисциплинарных исследовательских программ.

     Острее  всего необходимость приобретения “нового компаса для научного познания”, новых принципов организации научных исследований обнаружилась в связи с прогнозированием социальных процессов. Сложность предметов исследования, а также условия функционирования в системе управления социальными процессами, где требуются оперативность принятия решений, подлинная всесторонность в учете значимых факторов, - все это не могло не стимулировать продвижение науки в этой области на “порог эры человеческого новаторства”.

     Компьютеризация комплексного исследования взаимодействия человека и биосферы - исторический рубеж, которого достигла наука за очень короткий исторический промежуток времени на основе создания математических моделей живой природы. Экология уже оперирует не только простыми динамическими теориями популяций, но и всеми средствами теории динамических систем (уравнения в частных производных, в конечных разностях, интегральные и интегро-дифференциальные уравнения и т.д.). Математические методы проникли в самые разные области теоретической и прикладной экологии: в анализ взаимоотношения видов в сообществе, в исследование процессов миграции, территориального поведения, в анализ потоков вещества и энергии в экосистемах, в изучение проблем сложности и устойчивости сообществ, а также оценок влияния различных антропогенных факторов на природные системы, в исследование проблем оптимального управления природными ресурсами и эксплуатирования популяций и т.д. Компьютеризация привела к конструированию так называемых имитационных моделей взаимодействия человека и биосферы, принципиальная сложность которого требует учета большого числа как биологических, социальных, так и абиотических переменных.

     Интегрированные информационно-прогнозирующие системы - “стратегические ресурсы человечества” - получили наиболее впечатляющее применение, позволив пользователю обращаться к информации о динамических системах в режиме реального времени. Новой информационной технологии экологического прогнозирования уже принадлежит немаловажная заслуга: она “способствовала тому, что за сравнительно короткий исторический промежуток времени глобальные проблемы оказались в поле зрения мировой общественности и стали подлинно общечеловеческими не только по своей сути, но и по признанию, которое они себе завоевали”.

     Это, безусловно, важное достижение экологического прогнозирования должно быть дополнено решительным преодолением отмеченного в публикациях ООН недостатка “методологических инструментов ... интегрированного аналитического подхода к ... формированию и применению адекватной политики и планирования”. Ведь лица, принимающие решения, осмысливая проблемы экологической безопасности глобально, должны иметь в своем распоряжении прогнозы локальных мероприятий. А здесь встают задачи, требующие длительной и кропотливой проработки методов принятия рациональных решений, учитывающих объективные условия иерархичности структуры систем управления, информационную ограниченность и специализацию их органов, национальные и региональные особенности в выработке систем критериев в оценке эффективности, трудно обозримое многообразие целевых установок и задач управления и т.д.

     Ведущиеся в настоящее время теоретические  и прикладные исследования по созданию автоматизированных систем управления и многовариантных методов обоснования  принятия решений обеспечивают такую  модификацию информационного сервиса, которая создает наиболее комфортабельные условия не только для численного имитационного эксперимента, но и для логической интеграции вариантов достижения поставленных целей, а также для эффективного включения в циклический процесс прогностического обеспечения оптимизации взаимодействия человека и биосферы, развития ноосферы, междисциплинарных групп экспертов и представителей общественности. В этом будущее футурологии.

     Каждый  крупный регион, представляющий собой  территорию с определенными природными условиями и конкретным типом хозяйственного освоения, заслуживает особого рассмотрения с экологической точки зрения. Важность регионального экологического анализа заключается в том, что его результаты имеют большое прикладное значение (проблемы региона “ближе” человеку, нежели проблемы страны, континента или планеты). Помимо этого экологическое состояние регионов в конечном счете определяет и глобальное состояние природных компонентов.

     С учетом того, что общее число экологических  районов очень велико, а проблемы экологии во многих из них аналогичные, я рассматриваю два наиболее важных типа подобных районов.

     Экология  городов 

     Экологические проблемы городов, главным образом  наиболее крупных из них, связаны  с чрезмерной концентрацией на сравнительно небольших территориях населения, транспорта и промышленных предприятий, с образованием антропогенных ландшафтов, очень далеких от состояния экологического равновесия.

     Темпы роста населения мира в 1.5-2.0 раза ниже роста городского населения, к  которому сегодня относится 40 % людей планеты. За период 1939 – 1979 гг. население крупных городов выросло в 4, в средних – в 3 и малых – в 2 раза.

     Социально-экономическая  обстановка привела к неуправляемости  процесса урбанизации во многих странах. Процент городского населения в  отдельных странах равен: Аргентина – 83, Уругвай – 82, Австралия – 75, США – 80, Япония – 76, Германия – 90, Швеция – 83. Помимо крупных городов-миллионеров быстро растут городские агломерации или слившиеся города. Таковы Вашингтон-Бостон и Лос-Анжелес-Сан-Франциско в США; города Рура в Германии; Москва, Донбасс и Кузбасс в СНГ.

     Круговорот  вещества и энергии в городах  значительно превосходит таковой  в сельской местности. Средняя плотность  естественного потока энергии Земли  – 180 Вт/м2, доля антропогенной энергии в нем – 0.1 Вт/м2. В городах она возрастает до 30-40 и даже до 150 Вт/м2 (Манхэттен).

     Над крупными городами атмосфера содержит в 10 раз больше аэрозолей и в 25 раз больше газов. При этом 60-70 % газового загрязнения дает автомобильный  транспорт. Более активная конденсация влаги приводит к увеличению осадков на 5-10 %. Самоочищению атмосферы препятствует снижение на 10-20 % солнечной радиации и скорости ветра.

     При малой подвижности воздуха тепловые аномалии над городом охватывают слои атмосферы в 250-400 м, а контрасты температуры могут достигать 5-6° С. С ними связаны температурные инверсии, приводящие к повышенному загрязнению, туманам и смогу.

     Города  потребляют в 10 и более раз больше воды в расчете на 1 человека, чем  сельские районы, а загрязнение водоемов достигает катастрофических размеров. Объемы сточных вод достигают 1м 3 в сутки на одного человека. Поэтому практически все крупные города испытывают дефицит водных ресурсов и многие из них получают воду из удаленных источников.

     Водоносные  горизонты под городами сильно истощены в результате непрерывных откачек скважинами и колодцами, а кроме того загрязнены на значительную глубину.

     Коренному преобразованию подвергается и почвенный  покров городских территорий. На больших  площадях, под магистралями и кварталами, он физически уничтожается, а в  зонах рекреаций – парки, скверы, дворы – сильно уничтожается, загрязняется бытовыми отходами, вредными веществами из атмосферы, обогащается тяжелыми металлами, обнаженность почв способствует водной и ветровой эрозии.

     Растительный  покров городов обычно практически  полностью представлен “культурными насаждениями” – парками, скверами, газонами, цветниками, аллеями. Структура антропогенных фитоценозов не соответствует зональным и региональным типам естественной растительности. Поэтому развитие зеленых насаждений городов протекает в искусственных условиях, постоянно поддерживается человеком. Многолетние растения в городах развиваются в условиях сильного угнетения.

     Важно рассмотреть экологические проблемы крупных городов более детально и конкретно на примере Москвы. Исчерпывающую оценку экологического состояния столь крупного и сложного объекта, как Москва, дать затруднительно по следующим основным причинам:

  • оценка должна учитывать множество самых разных показателей по всем районам и предприятиям, производственным зонам, магистралям, системам связи, рекреационным площадям и т. д.;
  • полученные сведения должны быть систематизированы, сведены в единую легко интерпретируемую систему;
  • система сбора и обобщения имеющихся данных пока что не имеет единой научной концепции, разрознена и даже не всеми поддерживается. Социально-экологическая модель Москвы – задача предстоящих исследований.

     Обобщенные  данные свидетельствуют о сложном  экологическом состоянии Москвы. Город стремительно растет, переходит  за кольцевую дорогу, сливается с  городами-спутниками. Средняя плотность  населения 8.9 тыс. чел. на 1 кв. км. Сотни  тысяч источников выбрасывают в воздух огромное количество вредных веществ, т. к. частичная очистка внедрена только на 60 % предприятий. Особый вред наносится автомобилями, технические параметры которых не соответствуют требованиям и качеству воздуха. Выхлопные газы автомашин дают основную массу свинца, износ шин – цинк, дизельные моторы – кадмий. Эти тяжелые металлы относятся к сильным токсикантам. Промышленные предприятия дают очень много пыли, окислов азота, железа, кальция, магния, кремния. Эти соединения не столь токсичны, однако снижают прозрачность атмосферы, дают на 50 % больше туманов, на 10 % больше осадков, на 30 % сокращают солнечную радиацию. В целом на 1 москвича приходится 46 кг вредных веществ в год.

     Тепловое  воздействие увеличивает температуру в городе на 3-5° С, безморозный период на 10-12 дней и бесснежный – на 5-10 дней. Нагрев и подъем воздуха в центре вызывает подток его с окраины – как из лесопаркового пояса, так и из промышленных зон.

Информация о работе Влияние парникового эффекта на изменение климата земли