Электромагнитные излучения

Автор работы: Пользователь скрыл имя, 27 Апреля 2010 в 17:21, Не определен

Описание работы

Эволюция развития человечества и создание индустриальных методов хозяйствования привели к образованию глобальной техносферы, одним из элементов которой является железнодорожный транспорт. Природная среда при функционировании элементов техносферы является источником сырьевых и энергетических ресурсов и пространством для размещения ее инфраструктуры.
Железнодорожный транспорт по объему грузовых перевозок занимает первое место среди других видов транспорта, по объему перевозок пассажиров второе место после автомобильного транспорта.

Файлы: 1 файл

Промышленная экология.doc

— 168.00 Кб (Скачать файл)

    Цвета, которые мы воспринимаем, различаются  в зависимости от длины волны  видимого света.

    Причина, по которой человек способен видеть свет заключается в воздействии  света определенных длин волн на глазную сетчатку. Свет с длинами волн длиннее, чем самая длинная в спектре видимого света (красный цвет), называется инфракрасным (от латинского слова infra - ниже; то есть ниже той части спектра, которую может воспринять глаз). А свет с длинами волн короче наиболее коротких в видимом спектре называется ультрафиолетовым (от латинского слова ultra - более, сверх; то есть длина волны выше той, которую может воспринять глаз).

    Человеческому глазу не доступен ни инфракрасный, ни ультрафиолетовый свет, как и многие другие типы волн, но он может воспринимать огромный диапазон различных цветов (диапазон волн).

    Ультрафиолетовое излучение (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между видимым и рентгеновским излучением (380 — 10 нм, 7,9×1014 — 3×1016 Гц). Диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200—10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

    В таблице 2 показаны виды ультрафиолетового излучения. 

    Таблица 2 – Виды ультрафиолетового излучения

Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
Ближний NUV 400 нм — 300 нм 3.10 — 4.13 эВ
Средний МUV 300 нм — 200 нм 4.13 — 6.20 эВ
Дальний FUV 200 нм — 122 нм 6.20 — 10.2 эВ
Экстремальный EUV, XUV 121 нм — 10 нм 10.2 — 124 эВ
Вакуумный VUV 200 нм — 10 нм 6.20 — 124 эВ
Ультрафиолет  А, длинноволновой диапазон, Чёрный свет UVA 400 нм — 315 нм 3.10 — 3.94 эВ
 
Окончание таблицы 2
Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
Ультрафиолет B (средний диапазон) UVB 315 нм — 280 нм 3.94 — 4.43 эВ
Ультрафиолет  С, коротковолновой, гермицидный диапазон UVC 280 нм — 100 нм 4.43 — 12.4 эВ
 

    Рентгеновское излучение, невидимое излучение, способное  проникать, хотя и в разной степени, во все вещества. Представляет собой  электромагнитное излучение с длиной волны порядка 10-8 см.

    Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру.

    Рентгеновские лучи представляют собой невидимое  электромагнитное излучение с длиной волны 105 - 102 нм. Рентгеновские лучи могут проникать через некоторые  непрозрачные для видимого света  материалы. Испускаются они при  торможении быстрых электронов в веществе (непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (линейчастый спектр). Источниками рентгеновского излучения являются: рентгеновская трубка, некоторые радиоактивные изотопы, ускорители и накопители электронов (синхротронное излучение). Приемники - фотопленка, люминисцентные экраны, детекторы ядерных излучений. Рентгеновские лучи применяют в рентгеноструктурном анализе, медицине, дефектоскопии, рентгеновском спектральном анализе и т. п.

    Гамма-излучение, гамма-лучи (γ-лучи) — вид электромагнитного излучения с чрезвычайно маленькой длиной волны — < 5×10−3 нм и вследствие этого ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Гамма-квантами являются фотоны высокой энергии. Энергия квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению, если при взаимодействиях электронов или при переходах в атомной электронной оболочке — то к рентгеновскому излучению. Очевидно, физически кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

    Гамма-излучение  испускается при переходах между возбуждёнными состояниями атомных ядер (энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях. 

 

    Рисунок 5 – Гамма-излучения 

    Гамма-лучи в отличие от α-лучей и β-лучей не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

  • фотоэффект (гамма-квант поглощается электроном атомной оболочки, передавая ему всю энергию и ионизируя атом).
  • комптоновское рассеяние (гамма-квант рассеивается на электроне, передавая ему часть своей энергии).
  • рождение электрон-позитронных пар (в поле ядра гамма-квант с энергией не ниже 2mec2=1,022 МэВ превращается в электрон и позитрон).
  • фотоядерные процессы (при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра).

    Гамма-кванты, как и любые другие фотоны, могут  быть поляризованы.

    Гамма-излучения применяются в следующих областях:

  • Гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами.
  • Консервирование пищевых продуктов.
  • Стерилизация медицинских материалов и оборудования.
  • Лучевая терапия.
  • Уровнемеры.
  • Гамма-каротаж в геологии.

    Облучение гамма-квантами, в зависимости от дозы и продолжительности, может  вызвать хроническую и острую лучевую болезнь. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором.

    Защитой от гамма-излучения может служить  слой вещества. Эффективность защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается  при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана и пр.). 

Информация о работе Электромагнитные излучения