Устройство ввода информации

Автор работы: Пользователь скрыл имя, 04 Апреля 2011 в 22:14, курсовая работа

Описание работы

Целью курсовой работы является изучение конструкции и принципов работы устройств ввода информации, печатающих устройств персональных компьютеров и ознакомление с их основными характеристиками и программным обеспечением.

Задачи курсовой работы:

•разобраться, что представляют собой устройства ввода информации;
•познакомиться с некоторыми функциями WINDOWS, WORD и EXCEL.

Содержание работы

Введение……………………………………………………………………….…3

1 Устройства ввода информации……………………………………….….5

1.1 Клавиатура………………………………………………………………5

1.2 Манипуляторы…………………………………………………………..6

1.2.1 Мышь…………………………………………………………………..6

1.2.2 Трекбол……………………………………………………………...…8

1.2.3 Джойстик…………………………………………………………...….9

1.2.4 Тачпад……………………………………………………………….....9

1.2.5 Трекпоинт………………………………………………………….…12

1.3 Сканер………………………………………………………………….14

1.4 Дигитайзер……………………………………………………………...15

2 Операционная система WINDOWS……………………………………..17

2.1 Просмотр файлов…………………………………………………….…17

2.1.1 Средства автоматизации ввода и редактирования…………………18

2.2 Табличный процессор EXCEL…………………………………………18

2.2.1 Ввод названия таблицы и заголовков………………………………..18

3 Структурная схема ПК………………………………………………....…20

3.1 Внутренние устройства ПК………………………………………….…20

3.2 Внешние устройства ПК………………………………………………..26

4 Описание действий………………………………………………………..33

Заключение……………………………………………………………………….36

Файлы: 1 файл

Курсовая по информатике.doc

— 312.50 Кб (Скачать файл)

     Панель  навигации. Панель позволяет перейти  к интересующему вас файлу.

     Строка  состояния. В этой строке отображаются различные параметры и характеристики выбранного файла или объекта. В частности, отображаются текущая открытая папка и размер файла.

     Панель  подробностей. На этой панели также  отображаются некоторые свойства выбранного файла, такие как Дата изменения, Размер и Дата создания. 
 

      2.1.1 Средства автоматизации ввода и редактирования 

       Окно текущего документа всегда  содержит  мигающую  вертикальную  черту  — курсор. Ввод текста  осуществляется путем  набора  с  клавиатуры.  Вводимые символы   появляются  в  месте  расположения  курсора.  Курсор  при   вводе сдвигается вправо.

       Чтобы вводимый текст  замещал,  а  не  сдвигал  текст,  имевшийся  ранее, включают режим замены. Переключение режима  замены  осуществляют  нажатием клавиши INSERT или двойным щелчком на индикаторе ЗАМ в строке состояния.

       По достижении правого края  страницы текст  автоматически   переносится  на новую строку. Чтобы принудительно завершить  строку и начать новый  абзац, надо нажать клавишу ENTER.

       Установить курсор в нужное  место документа проще  всего   щелчком  мыши  в нужной точке. То же можно выполнить курсорными клавишами.  
 

    2.2Табличный процессор EXCEL  
     

    2.2.1Ввод названия таблицы и заголовков  

     Для создания таблицы раскрываем приложение Excel Microsoft Office. После ввода названия таблицы заполняем заголовки столбцов и форматируем их. Для этого выбираем команды меню Формат-Столбец-Ширина и устанавливаем необходимые значения ( в соответствии с количеством символов в каждом поле, оговоренном в структуре базы данных). После ввода заголовков столбцов выбираем соответствующий вид форматирования. Для этого используем пункты меню Формат Ячейки и активизируем соответствующие вкладки: Число-Выравнивание-Шрифт. В числовых полях задаем 2 знака после точки, выравнивание в тестовых полях устанавливаем по правому краю ячейки, выравнивание числовых полей выполняем по центру. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     3 Структурная схема ПК

     

 

  Структурная схема типовой ПЭВМ

 

Рисунок 9 – Структурная схема ПК 
 

     3.1 Внутренние устройства ПК 

     Материнская (системная, главная) плата является центральной частью любого компьютера. На материнской плате размещаются в общем случае центральный процессор, сопроцессор, контроллеры, обеспечивающие связь центрального процессора с периферийными устройствами, оперативная память (RAM), кэш-память, элемент ROM-BIOS (базовой системы ввода/вывода), аккумуляторная батарея, кварцевый генератор тактовой частоты и слоты (разъемы) для подключения других устройств.

     Общая производительность материнской платы  определяется не только тактовой частотой, но и количеством (разрядностью) данных, обрабатываемых в единицу времени  центральным процессором, а также  разрядностью шины обмена данных между различными устройствами материнской платы.

     По  шине данных происходит обмен данными  между центральным процессором, картами расширения и памятью. Разрядность  шины данных варьируется от 8-ми битов (сейчас не используется) до 64-х битов  в материнских платах современных PC.

     По  адресной шине происходит адресация  ячеек памяти, в которые производится запись данных.

     По  шине управления или системной шине происходит передача управляющих сигналов между центральным процессором  и периферией. На материнской плате системная шина заканчивается слотами для установки других устройств. Адресные шины и шины данных иногда занимают одни и те же физические проводники.

     Современный период развития электроники все  чаще характеризуют как эру микропроцессоров. Персональная ЭВМ - это прежде всего микропроцессорная ЭВМ. Чаще всего это означает, что центральный процессор такого компьютера в основном реализован на одной интегральной схеме с большой или сверхбольшой степенью интеграции электронных компонентов, которая представляет собой микропроцессор. В персональных ЭВМ используются функционально-законченные однокристальные микропроцессоры с фиксированной разрядностью и с фиксированной системой команд.

     Одна  из основных характеристик микропроцессора - разрядность. Эта характеристика указывает количество двоичных разрядов, с которыми одновременно может работать микропроцессор, т. е. количество разрядов (длина двоичного числа), которое процессор обрабатывает за один такт.

     Когда говорят о возможностях персонального  компьютера с точки зрения аппаратных средств, то прежде всего называют модель используемого в нем основного микропроцессора, который, как правило, выполняет функцию центрального процессора ПЭВМ. Центральный процессор - мозг вашего компьютера. Он способен интерпретировать и выполнять все команды, хранящиеся в памяти, записывать информацию в память и считывать ее оттуда, осуществляет доступ к внешним устройствам, таким как последовательный порт и контроллер диска, и включает сложную логику управления и набор регистров. Регистры образуют внутреннюю память, которая оптимизирована с точки зрения эффективности скорости доступа. Центральный процессор воспринимает язык самого низкого уровня (машинный код), функции которого ограничены операциями, выполняемыми с помощью этих регистров. К содержимому некоторых регистров информация, поступающая из внешней памяти, может прибавляться или вычитаться. В их число входит регистр, называемый программным счетчиком, который содержит номер очередной команды, подлежащей выполнению. Он «знает» адрес ячейки памяти, где хранится эта команда, и производит ее выборку в центральный процессор. При этом содержимое программного счетчика возрастает и указывает на адрес следующей команды и т. д.

     Еще одна характеристика компьютера из числа  особо важных - емкость памяти. Это фактически две характеристики - одна из них относится к внутренней памяти, емкости его ОЗУ (оперативного и запоминающего устройства), а вторая - к внешнему накопителю информации на магнитных дисках. Во втором случае польза от увеличения емкости памяти очевидна: чем она больше - тем больше полезных программ и информации мы можем хранить в компьютере.

     Из  двух этих видов внутренней памяти ПЭВМ наибольший интерес представляет оперативное запоминающее устройство (ОЗУ). Стоит обратить особое внимание на слово «оперативная» - только тем, что находится в ОЗУ, компьютер может свободно и быстро распоряжаться, т. к. эта память реализована на интегральных микросхемах и ее быстродействие (скорость записи/считывания) соизмеримо с быстродействием процессора.

     Емкость ОЗУ в значительной мере определяет возможности ЭВМ в решении сложных задач, в зрелищных динамических играх, в работе с графикой. Количество ячеек ОЗУ не может быть беспредельным, оно, в частности, ограничено разрядностью шины (магистрали) адресов микропроцессора. Почувствовать реальные значения емкости ОЗУ поможет знание того, что 1 символ = 1 байт = 8 бит, а 256-цветовая картинка с разрешением 640´480 точек занимает 307 Кбайт, картинка 1024´768 точек на 256 цветов - 768Кбайт.

     Поэтому, чем больше оперативная память, тем больше возможностей по конфигурированию системы под конкретные задачи, тем быстрее - в среднем - будет работать компьютер. Емкость ОЗУ можно изменять в зависимости от потребностей пользователя персонального компьютера. Для этого ОЗУ выполнено в виде специальных SIMM-модулей (Single In-line Memory Module - модуль памяти с односторонним расположением выводов) с объемами памяти 256Кбайт, 1 Мбайт, 4Мбайт, 8Мбайт, 16Мбайт и 32Мбайта. Как правило, на системной плате имеется 4 - 8 слотов для подключения этих модулей, которые могут быть заполнены лишь частично. Соответственно емкость ОЗУ современных компьютеров может варьироваться в пределах от 1Майта (4´256Кбайт SIMM) до 256Мбайт (8´32Mбайт SIMM).

     Оперативная память компьютера разделяется на несколько типов:

  • стандартная (conventional) память размером в 1 Мбайт, в которую входит базовая (base) - 640 Кбайт и резервная (reserved или upper - UMB), которая зарезервирована для размещения драйверов периферийных устройств, объемом в 384 Кбайт;
  • расширенная (extended - XMS) память (свыше 1 Мбайта);
  • наращиваемая (expanded - EMS) память. Для использования памяти свыше 1 Мбайта в прикладных программах фирмы Lotus, Intel, Microsoft разработали стандарт LIM EMS (Lotus, Intel, Microsoft Expanded Specification), позволяющий адресовать до 32 Мбайт оперативной памяти. В соответствии с этим стандартом оперативная память свыше 1 Мбайта разбивается на страницы, адресация к которым управляется специальным драйвером (обычно называют EMM - Expanded Memory Manager) через буфер страниц, который выделяется в резервной памяти (UMB). В настоящее время данный тип памяти практически не используется и поддерживается лишь для сохранения совместимости со старыми программами.

     Такая организация памяти объясняется  преемственностью процессоров разных поколений персональных компьютеров процессов.

     При отключении питания содержимое в  ОЗУ стирается. По этой причине персональные компьютеры включают постоянное запоминающее устройство (ПЗУ) небольшой емкости. В нем обычно содержится набор подпрограмм-утилит и программ загрузчиков - BIOS (bases input/output system - базовая система ввода/вывода), которые позволяют запустить систему после включения. Эти программы записываются на заводе-изготовителе.

     Кэш-память предназначена для согласования скорости работы сравнительно медленных устройств, таких, например как динамическая память с быстрым микропроцессором. Использование кэш-памяти позволяет избежать циклов ожидания в его работе, которые снижают производительность всей системы.

     С помощью кэш-памяти обычно делается попытка согласовать также работу внешних устройств, например, различных накопителей, и микропроцессора. Соответствующий контролер кэш-памяти должен заботиться о том, чтобы команды и данные, которые будут необходимы микропроцессору в определенный момент времени, именно к этому моменту оказывались в кэш-памяти.

     Для долговременного хранения информации служат гибкие магнитные диски (дискеты) и жесткий магнитный диск («винчестер»).

     Широко  распространены жесткие диски емкостью 240-3600 Мбайт и среднем временем доступа 8-15 мс. Причем требования к объему и параметрам жесткого диска, входящего в базовую конфигурацию компьютера постоянно растут. Это обусловлено прежде всего, увеличением объемов и сложности базового программного обеспечения.

     Квалифицировать винчестеры принято, прежде всего, по диаметру дисков, на которых производится запись информации. Практически во всех персональных компьютерах используются 3.5-дюймовые винчестеры, а 2.5-дюймовые - в основном в компьютерах типа notebook. Особый класс устройств - это винчестеры диаметром 1.8 дюйма в стандарте PCMCIA (Personal Computer Memory Card International Association). Имея размеры стандартной кредитной карточки при толщине 10.5 мм, емкость около 130 Мбайт и возможность "горячего" (при работающем компьютере) подключения, такой винчестер позволяет реализовать концепцию персонального хранения информации.

     Современные винчестеры выпускаются с двумя  видами интерфейсов:

  • SCSI (Small Computer System Interface). Скорость передачи данных по стандарту SCSI-2 достигает 10 Мбайт/с в 8-битовом Fast-режиме и 20 Мбайт/с 16-битовом FastWide-режиме, что позволяет применять этот интерфейс для широкого класса компьютеров, включая супер-ЭВМ.
  • IDE (Integrated Drive Electronics или ATA) является гораздо более дешевым вариантом и до последнего времени существенно уступал по возможностям интерфейсу SCSI. Положение изменилось с началом внедрения стандарта ATA-2 (или Enhanced IDE). Его особенности: поддержка до 4 устройств, в том числе накопителей CD-ROM и накопителей на ленте ATAPI (ATA Packet Interface), скорость передачи данных при использовании контроллера с локальной шиной может достигать 11-13 Мбайт/с, преодолен барьер в 504 Мбайта для емкости накопителя.

      Наибольшее  распространение из всех типов гибких магнитных дисков имеют дискеты диаметром 133 мм (5.25 дюйма) и 89 мм (3.5 дюйма), максимальной емкостью 1,2 Мбайта и 1,44 Мбайт соответственно. Хотя некоторые пользователи продолжают применять устаревшие 5,25-дюймовые дискеты, их долю в общем объеме потребления считать пренебрежительно малой.

Информация о работе Устройство ввода информации