Разработка локальной вычислительной сети производственного кооператива

Автор работы: Пользователь скрыл имя, 07 Декабря 2010 в 20:47, Не определен

Описание работы

Анализ и выбор методов построения локальной сети

Файлы: 1 файл

Курсовая по ВССТ2.doc

— 287.00 Кб (Скачать файл)

     Серьезный недостаток топологии «звезда» состоит  в жестком ограничении количества абонентов. Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов. Если в этих пределах подключение новых абонентов довольно просто, то при их превышении оно просто невозможно. Правда, иногда в звезде предусматривается возможность наращивания, то есть подключение вместо одного из периферийных абонентов еще одного центрального абонента (в результате поручается топология из нескольких соединенных между собой звезд).

     Существует  также топология, называемая пассивной  звездой, которая только внешне похожа на звезду. В настоящее время она распространена гораздо больше, чем активная звезда. Достаточно сказать, что она используется в самой популярной на сегодняшний день сети Ethernet.

     В центре сети с данной топологией помещается не компьютер, а концентратор, или хаб (hub), выполняющий ту же функцию, что и репитер. Он восстанавливает приходящие сигналы и пересылает их в другие линии связи. Хотя схема прокладки кабелей подобна истинной или активной звезде, фактически мы имеем дело с шинной топологией, так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а центрального абонента не существует. Естественно, пассивная звезда получается дороже обычной шины, так как в этом случае обязательно требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную шину, которая считается малоперспективной топологией.

     Можно выделить также промежуточный тип  топологии между активной и пассивной  звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом, однако сам в обмене не участвует.

     Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности сети путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шины), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К каждому периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два кабеля (каждый из них передает в одном направлении), причем вторая ситуация встречается чаще.

     Общим недостатком для всех топологий  типа «звезда» является значительно больший, чем при других топологиях, расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 1.1), то при выборе топологии «звезда» понадобится в несколько раз больше кабеля, чем при топологии «шина». Это может существенно повлиять на стоимость всей сети в целом.

Топология «кольцо»

     «Кольцо» - это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию. а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов. Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает) приходящий к нему сигнал, то есть выступает в роли репитера, поэтому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в данном случае нет, все компьютеры могут быть одинаковыми. Однако довольно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен.

     Строго  говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, ведущего передачу в данный момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.

     Подключение новых абонентов в «кольцо» обычно совершенно безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно является самой устойчивой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

     Так как сигнал в кольце проходит через  все компьютеры сети, выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу всей сети в целом. Точно так же любой обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Кольцо наиболее уязвимо к повреждениям кабеля, поэтому в этой топологии обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве.

     В то же время крупное преимущество кольца состоит в том, что ретрансляция сигналов каждым абонентом позволяет существенно увеличить размеры всей сети в целом (порой до нескольких десятков километров). Кольцо в этом отношении существенно превосходит любые другие топологии.

     Недостатком кольца (по сравнению со звездой) можно  считать то, что к каждому компьютеру сети необходимо подвести два кабеля.

     Иногда  топология «кольцо» выполняется  на основе двух кольцевых линий связи, передающих информацию в противоположных направлениях. Цель подобного решения - увеличение (в идеале - вдвое) скорости передачи информации. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится). 

     Полносвязная  сеть

     В ней каждый компьютер соединён со всеми другими компьютерами отдельными линиями.

     Преимущества  полносвязной сети:

  1. Высокая надёжность, так как при отказе любого канала связи будет найден обходной канал для передачи информации.
  2. Высокое быстродействие, так как информация между компьютерами передаётся по отдельным линиям.

Недостатки  данной топологии:

  1. Требует большого числа соединительных линий, то есть стоимость создания подобной сети очень высокая.
  2. Трудность построения сети при большом количестве компьютеров, так как от каждого компьютера к остальным необходимо прокладывать отдельные линии.

     Топология полносвязной сети обычно применяется для малых сетей с небольшим количеством компьютеров, которые работают с полной загрузкой каналов связи. 

     Древовидная топология

     В сетях с древовидной топологией компьютеры не посредственно связанны с центральными узлами сети – серверами.

     Древовидная топология представляет собой комбинацию топологии типа звезда и топологии  типа общая шина. Поэтому ей в  основном присуще те же преимущества и недостатки, которые были указанны для данных топологий. 

     Для реализации компьютерной сети вышеуказанной организации будет использована топология «звезда». Эта топология удовлетворяет поставленной задаче, а также имеет массу достоинств. 

1.2. Сетевая архитектура

    Сетевая архитектура Ethernet

   Ethernet - это самый распространенный  на сегодняшний день стандарт локальных сетей. Общее количество сетей, работающих по протоколу Ethernet в настоящее время, оценивается в 5 миллионов, а количество компьютеров с установленными сетевыми адаптерами Ethernet - в 50 миллионов.

   Когда говорят Ethernet, то под этим обычно понимают любой из вариантов этой технологии. В более узком смысле Ethernet - это сетевой стандарт, основанный на экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году. Метод доступа был опробован еще раньше: во второй половине 60-х годов в радиосети Гавайского университета использовались различные варианты случайного доступа к общей радиосреде, получившие общее название Aloha. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля, который стал последней версией фирменного стандарта Ethernet. Поэтому фирменную версию стандарта Ethernet называют стандартом Ethernet DIX

   На  основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, который во многом совпадает со своим предшественником, но некоторые различия все же имеются. В то время как в стандарте IEEE 802.3 различаются уровни MAC и LLC, в оригинальном Ethernet оба эти уровня объединены в единый канальный уровень, В Ethernet DIX определяется протокол тестирования конфигурации (Ethernet Configuration Test Protocol), который отсутствует в IEEE 802.3.

   В зависимости от типа физической среды  стандарт IEEE 802.3 имеет различные модификации - l0Base-5, l0Base-2, l0Base-T, l00Base-Т. Такая маркировка не случайна, так первое число в указанных выше названиях обозначает битовую скорость передачи данных этих стандартов (Мбит/с), а слово Base - метод передачи на одной базовой частоте (узкополосные). Последний символ в названии стандарта обозначает тип кабеля.

   10Base-5

   Стандарт 10Base-5 в основном соответствует экспериментальной сети Ethernet фирмы Xerox и может считаться классическим Ethernet. Так же как и классический Ethernet стандарт использует топологию типа «Общая шина», а в качестве среды передачи данных коаксиальный кабель с волновым сопротивлением 50 Ом, диаметром центрального медного провода 2,17 мм и внешним диаметром около 10 мм («толстый» Ethernet).

   Кабель  используется как моноканал для  всех станций. Сегмент кабеля имеет максимальную длину 500 м (без повторителей) и должен иметь на концах согласующие терминаторы сопротивлением 50 Ом, поглощающие распространяющиеся по кабелю сигналы и препятствующие возникновению отраженных сигналов. При отсутствии терминаторов («заглушек») в кабеле возникают стоячие волны, так что одни узлы получают мощные сигналы, а другие - настолько слабые, что их прием становится невозможным.

   Станция должна подключаться к кабелю при  помощи приемопередатчика - трансивера (transmitter+Teceiver = transceiver). Трансивер устанавливается непосредственно на кабеле и питается от сетевого адаптера компьютера. Трансивер может подсоединяться к кабелю как методом прокалывания, обеспечивающим непосредственный физический контакт, так и бесконтактным методом.

   Трансивер соединяется с сетевым адаптером  интерфейсным кабелем АUI (Attachment Unit Interface) длиной до 50 м, состоящим из 4 витых пар. Наличие стандартного интерфейса между трансивером и остальной частью сетевого адаптера очень полезно при переходе с одного типа кабеля на другой. Для этого достаточно только заменить Трансивер, а остальная часть сетевого адаптера остается неизменной. При этом необходимо только, чтобы новый Трансивер (например, Трансивер для витой пары) поддерживал стандартный интерфейс AUI. Допускается подключение к одному сегменту не более 100 трансиверов, причем расстояние между подключениями трансиверов не должно быть меньше 2,5 м. На кабеле имеется разметка через каждые 2,5 м, которая обозначает точки подключения трансиверов. При возникновении неисправностей в адаптере может возникнуть ситуация, когда на кабель будет непрерывно выдаваться последовательность случайных сигналов. Так как кабель - это общая среда для всех станций, то работа сети будет заблокирована одним неисправным адаптером. Чтобы этого не случилось, на выходе передатчика ставится схема, которая проверяет время передачи сигнала. Если максимально возможное время передачи сигнала превышается (с некоторым запасом), то эта схема просто отсоединяет выход передатчика от кабеля. Такую функцию называют «контролем болтливости», что является буквальным переводом соответствующего английского термина (jabber control).

   Стандарт  l0Base-5 определяет возможность использования в сети специального устройства - повторителя (repeater). Повторитель служит для объединения в одну сеть нескольких сегментов кабеля и увеличения тем самым общей длины сети. Повторитель принимает сигналы из одного сегмента кабеля и побитно синхронно повторяет их в другом сегменте, улучшая форму и мощность импульсов, а также синхронизируя импульсы. Повторитель состоит из двух (или нескольких) трансиверов, которые присоединяются к сегментам кабеля, а также блока повторения со своим тактовым генератором. Стандарт разрешает использование в сети не более 4 повторителей и, соответственно, не более 5 сегментов кабеля. При максимальной длине сегмента кабеля в 500 м это дает максимальную длину сети l0Base-5 в 2500 м. Только 3 сегмента из 5 могут быть нагруженными, то есть такими, к которым подключаются конечные узлы. Между нагруженными сегментами должны быть ненагруженные сегменты, так что максимальная конфигурация сети представляет собой два нагруженных крайних сегмента, которые соединяются ненагруженными сегментами еще с одним центральным нагруженным сегментом. Правило применения повторителей в сети Ethernet l0Base-5 носит название «правило 5-4-З. 5 сегментов, 4 повторителя, 3 нагруженных сегмента. Ограниченное число повторителей объясняется дополнительными задержками распространения сигнала, которые они вносят. Каждый повторитель подключается к сегменту одним своим трансивером, поэтому к нагруженным сегментам можно подключить не более 99 узлов. Максимальное число конечных узлов в сети l0Base-5, таким образом, составляет 99*3 = 297 узлов.

Информация о работе Разработка локальной вычислительной сети производственного кооператива