Поколения ЭВМ

Автор работы: Пользователь скрыл имя, 28 Октября 2015 в 21:13, реферат

Описание работы

В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и малоизвестным широкой публике. Однако в 1971 году произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей. В том знаменательном году еще почти никому не известная фирма Intel из небольшого американского городка Санта-Клара (шт. Калифорния), выпустила первый микропроцессор.

Содержание работы

Введение...................................................................................................................3
Глава 1. Электронные вычислительные машины.................................................4
ЭВМ: общая характеристика и особенности.........................................4
История и тенденции развития ЭВМ.....................................................6
Глава 2. Поколения ЭВМ........................................................................................9
Первое поколение ЭВМ.........................................................................10
Второе поколение ЭВМ….....................................................................12
Третье поколение ЭВМ..........................................................................13
Четвертое поколение ЭВМ....................................................................16
Вывод......................................................................................................................18
Список использованной литературы...................................................................19

Файлы: 1 файл

Этапы развития ЭВМ.docx

— 49.67 Кб (Скачать файл)

По мере развития вычислительной техники автоматизация этих этапов идет снизу вверх.

На пути развития электронной вычислительной техники можно выделить четыре поколения ЭВМ, отличающихся элементной базой, функционально-логической организацией, конструктивно-технологическим исполнением, программным обеспечением, техническими и эксплуатационными характеристиками, степенью доступа к ЭВМ со стороны пользователей. Смене поколений сопутствовало изменение основных технико-эксплуатационных и технико-экономических показателей ЭВМ и в первую очередь таких, как быстродействие, емкость памяти, надежность и стоимость. При этом одной из основных тенденций развития было и остается стремление уменьшить трудоемкость подготовки программ решаемых задач, облегчить связь операторов с машинами, повысить эффективность использования последних. Это диктовалось и диктуется постоянным ростом сложности и трудоемкости задач, решение которых возлагается на ЭВМ в различных сферах применения.

Возможности улучшения технико-эксплуатационных показателей ЭВМ в значительной степени зависят от элементов, используемых для построения их электронных схем. Поэтому при рассмотрении этапов развития ЭВМ каждое поколение в первую очередь, как правило, характеризуется используемой элементной базой.

2.1. Первое поколение ЭВМ

Основным активным элементом компьютеров первого поколения являлась электронная лампа, остальные компоненты электронной аппаратуры – это обычные резисторы, конденсаторы, трансформаторы. Для построения оперативной памяти уже с середины 50-х годов начали применяться специально разработанные для этой цели элементы – ферритовые сердечники с прямоугольной петлей гистерезиса. В качестве устройства ввода-вывода сначала использовалась стандартная телеграфная аппаратура (телетайпы, ленточные перфораторы, трансмиттеры, аппаратура счетно-перфорационных машин), а затем специально были разработаны электромеханические запоминающие устройства на магнитных лентах, барабанах, дисках и быстродействующие печатающие устройства.

Компьютеры этого поколения имели значительные размеры, потребляли большую мощность. Быстродействие этих машин составляло от нескольких сотен до нескольких тысяч операций в секунду, емкость памяти – несколько тысяч машинных слов, надежность исчислялась несколькими часами работы.

В этих ЭВМ автоматизации подлежал только шестой этап, так как практически отсутствовало какое-либо программное обеспечение. Все пять предыдущих этапов пользователь должен  был  готовить  вручную  самостоятельно,  вплоть  до  получения  машинных  кодов программ. Для написания программ использовался язык ассемблера, который затем транслировался в машинный язык для выполнения. Трудоемкий и рутинный характер этих работ был источником большого количества ошибок в заданиях. Поэтому в ЭВМ следующих поколений появились сначала элементы, а затем целые системы, облегчающие процесс подготовки задач к решению.

ENIAC − первый электронный цифровой компьютер общего назначения. В 1946 году в Филадельфии в университете штата Пенсильвания (США) была официально введена в эксплуатацию электронная цифровая вычислительная машина ENIAC (Electronic Numerical Integrator and Calculator − электронный численный интегратор и вычислитель), на электронных лампах, построенная американскими инженерами Дж.П. Эккертом и Дж. Мокли и использовавшая в качестве переключающих элементов 18 тысяч электронных ламп и 1500 реле. Машина с памятью на 20 слов, способная за полсекунды перемножать одно на другое 5000 пятизначных чисел, занимала площадь около 200 квадратных м и весила 50 т. ENIAC предназначался для проведения артиллерийских расчетов, однако пока его строили, война закончилась, задачи такого рода отпали, так что первой работой стали расчеты по сверхсекретному Манхэттенскому проекту (программе разработок ядерного оружия). Впоследствии ЭВМ перевезли на один из военных полигонов, где она функционировала до 1955 года.

МЭСМ. В 1948 году академик Сергей Алексеевич Лебедев предложил проект первой на континенте Европы ЭВМ Малой электронной счетной машины (МЭСМ). В 1951 году МЭСМ официально вводится в эксплуатацию, на ней регулярно решаются вычислительные задачи. Машина оперировала с 20 разрядными двоичными кодами с быстродействием 50 операций в секунду, имела оперативную память в 100 ячеек на электронных лампах. Она имеет около 6000 электровакуумных ламп (около 3500 триодов и 2500 диодов), занимает площадь 60 м2, потребляет мощность около 25 кВт.

2.2. Второе поколение ЭВМ

На смену ламп пришли транзисторы в машинах второго поколения (начало 60-х годов). Первые транзисторы были разработаны сотрудниками AT&T Bell Laboratories уже в начале 1940-х годов. Компьютеры стали обладать большими быстродействием, емкостью оперативной памяти, надежностью. Все основные характеристики возросли на 1-2 порядка.  Существенно были уменьшены размеры, масса и потребляемая мощность. Большим достижением явилось применение печатного монтажа. Повысилась надежность электромеханических устройств ввода-вывода, удельный вес которых увеличился. Процессоры ввода-вывода функционировали параллельно с выполнявшим программы центральным процессором, за счет чего увеличилась общая производительность компьютера. Машины второго поколения стали обладать большими вычислительными и логическими возможностями.

Особенность  машин  второго  поколения – их  дифференциация  по  применению. Появились компьютеры для решения научно-технических и экономических задач, для управления  производственными  процессами  и  различными  объектами (управляющие машины).

Наряду с техническим совершенствованием ЭВМ развиваются методы и приемы программирования вычислений, высшей ступенью которых является появление систем автоматизации  программирования,  значительно  облегчающих  труд  математиков-программистов. Большое развитие и применение получили алгоритмические языки, существенно упрощающие процесс подготовки задач к решению. С появлением алгоритмических языков резко сократились штаты программистов, поскольку составление программ на этих языках стало под силу самим пользователям.

Широкое применение алгоритмических языков (Автокоды, Алгол, Фортран и др.) и соответствующих им трансляторов, позволяющих автоматически формировать машинные программы по их описанию на алгоритмическом языке, привело к созданию библиотек стандартных программ, что позволило строить машинные программы блоками, используя  накопленный  и  приобретенный  программистами  опыт.  Новые  программные средства здесь еще не объединялись в отдельные пакеты под общим управлением. Отметим, что временные границы появления всех этих нововведений достаточно размыты. Обычно их истоки можно обнаружить уже в недрах ЭВМ предыдущих поколений.

2.3. Третье поколение ЭВМ

В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360) на микросхемах, ставших первыми компьютерами третьего поколения.

Третье поколение ЭВМ (в конце 60-х – начале 70-х годов) характеризуется широким применением интегральных схем (объединение множества транзисторов на одном кремниевом чипе). Они заменили память на магнитных сердечниках. Интегральная схема представляет собой законченный  логический  и  функциональный  блок,  соответствующий  достаточно  сложной транзисторной схеме. Благодаря использованию интегральных схем удалось еще более улучшить  технические  и  эксплуатационные  характеристики  машин.  Вычислительная техника стала иметь широкую номенклатуру устройств, позволяющих строить разнообразные системы обработки данных, ориентированные на различные применения. Они охватывали широкий диапазон по производительности, чему способствовало также повсеместное применение многослойного печатного монтажа.

В  компьютерах  третьего  поколения  значительно  расширился  набор  различных электромеханических устройств ввода и вывода информации. Развитие этих устройств носит эволюционный характер: их характеристики улучшаются гораздо медленнее, чем характеристики электронного оборудования.

Отличительной  особенностью  развития  программных  средств  этого  поколения является появление ярко выраженного программного обеспечения и развитие его ядра – операционных систем, отвечающих за организацию и управление вычислительным процессом. Именно здесь понятие «ЭВМ» все чаще стало заменяться понятием «вычислительная система», что в большей степени отражало усложнение как аппаратурной, так и программной частей ЭВМ. Стоимость программного обеспечения стала расти, и в настоящее время намного опережает стоимость аппаратуры.

Операционная система (ОС) планирует последовательность распределения и использования ресурсов вычислительной системы, а также обеспечивает их согласованную работу. Под ресурсами обычно понимают те средства, которые используются для вычислений: машинное время отдельных процессоров или ЭВМ, входящих в систему; объемы оперативной и внешней памяти; отдельные устройства, информационные массивы; библиотеки программ; отдельные программы как общего, так и специального применения и т.п. Интересно, что наиболее употребительные функции ОС в части обработки внештатных ситуаций (защита программ от взаимных помех, системы прерываний и приоритетов, служба времени, сопряжение с каналами связи и т.д.) были полностью или частично реализованы аппаратурно. Одновременно были реализованы более сложные режимы работы: коллективный доступ к ресурсам, мультипрограммные режимы. Часть этих решений стала своеобразным стандартом и начала использоваться повсеместно в ЭВМ различных классов.

В машинах третьего поколения существенно расширены возможности по обеспечению непосредственного доступа к ним со стороны абонентов, находящихся на различных, а том числе и значительных (десятки и сотни километров) расстояниях. Удобство общения абонента с машиной достигается за счет развитой сети абонентских пунктов, связанных с ЭВМ информационными каналами связи, и соответствующего программного обеспечения.

Например, в режиме разделения времени многим абонентам предоставляется возможность одновременного, непосредственного и оперативного доступа к ЭВМ. Вследствие большого различия инерционности человека и машины у каждого из одновременно работающих абонентов складывается впечатление, будто ему одному предоставлено машинное время.

Здесь еще в большей степени проявляется тенденция к унификации ЭВМ, созданию машин, представляющих собой единую систему. Ярким примером этой тенденции служит отечественная программа создания и развития Единой системы электронных вычислительных машин (ЕС ЭВМ).

ЕС ЭВМ представляла собой семейство (ряд) программно-совместимых машин, построенных на единой элементной базе, на единой конструктивно-технологической основе, с единой структурой, единой системой программного обеспечения и единым унифицированным набором внешних устройств.

Промышленный выпуск первых моделей ЕС ЭВМ был начат в 1972 г., при их создании были использованы все современные достижения в области электронной вычислительной техники, технологии и конструирования ЭВМ, в области построения систем программного  обеспечения.  Объединение  знаний  и  производственных  мощностей  стран-разработчиков позволило в довольно сжатые сроки решить сложную комплексную научно-техническую  проблему.  ЕС  ЭВМ  представляла  собой  непрерывно  развивающуюся систему,  в  которой  улучшались  технико-эксплуатационные  показатели  машин,  совершенствовалось периферийное оборудование и расширялась его номенклатура.

2.4 .Четвертое поколение ЭВМ

Для машин четвертого поколения (80-е годы) характерно применение больших интегральных  схем (БИС).  Высокая  степень  интеграции  способствовала увеличению плотности компоновки электронной аппаратуры, усложнению ее функций, повышению надежности и быстродействия, снижению стоимости. Это в свою очередь оказало существенное воздействие на логическую структуру ЭВМ и ее программное обеспечение. Более тесной стала связь структуры машины и ее программного обеспечения, особенно операционной системы.

В четвертом поколении с появлением в США микропроцессоров (1971 г.) возник новый класс вычислительных машин – микро ЭВМ, на смену которым пришли персональные компьютеры (ПК, начало 80-х годов). В этом классе ЭВМ наряду с БИС стали использоваться сверхбольшие интегральные схемы (СБИС) 32-, а затем 64-разрядности.

Появление ПК – наиболее яркое событие в области вычислительной техники, до последнего времени самый динамично развивающийся сектор отрасли. С их внедрением решение задач информатизации общества было поставлено на реальную основу.

Основная  цель  использования  ПК – формализация  профессиональных  знаний. Здесь, в первую очередь, автоматизируется рутинная часть работ (сбор, накопление, хранение и обработка данных), которая занимает более 75% рабочего времени специалистов-прикладников. Применение ПК позволило сделать труд специалистов творческим, интересным, эффективным. В настоящее время ПК используются повсеместно, во всех сферах деятельности людей. Новые сферы применения изменили и характер вычислительных работ. Так, инженерно-технические расчеты составляют не более 9-15%, в большей степени ПК теперь используются для автоматизации управления сбытом, закупками, управления запасами, производством, для выполнения финансово-экономических расчетов, делопроизводства, игровых задач и т.п.

Применение ПК позволило использовать новые информационные технологии и создавать системы распределенной обработки данных. Высшей стадией систем распределенной обработки данных являются компьютерные (вычислительные) сети различных уровней – от локальных до глобальных.

В компьютерах этого поколения продолжается усложнение технических и программных структур (иерархия управления средствами, увеличение их количества). Следует указать на заметное повышение уровня «интеллектуальности» систем, создаваемых на их основе. Программное обеспечение этих машин создает «дружественную» среду общения человека и компьютера. Оно, с одной стороны, управляет процессом обработки информации, а с другой, создает необходимый сервис для пользователя, снижая трудоемкость его рутинной работы и предоставляя ему возможность больше внимания уделять творчеству.

Подобные тенденции будут сохраняться и в ЭВМ следующих поколений. Так, по мнению исследователей 1, машины следующего столетия будут иметь встроенный в них «искусственный  интеллект», что  позволит  пользователям  обращаться  к  машинам (системам) на естественном языке, вводить и обрабатывать тексты, документы, иллюстрации, создавать системы обработки знаний и т.д. Все это приводит к необходимости усложнения аппаратной части компьютеров, появлению вычислительных систем на их основе, а также к разработке сложного иерархического программного обеспечения систем обработки данных.

 

 

Вывод

В течение последних трех столетий, вплоть до середины двадцатого века, для выполнения базовых операция сложения, вычитания, умножения и деления изобретались все более сложные механизмы, состоящие из колесиков, рычагов и блоков. Для автоматического управления последовательностью вычислений сначала использовали перфорированные карты, расположение отверстий в которых определялось механическим путем. Эти карты представляли собой прообраз компьютерных программ. Механические устройства могли вычислять целые математические таблицы логарифмов и тригонометрических функций. Выходные результаты пробивали на картах или печатали на бумаге. Во время второй мировой войны были сконструированы компьютеры, основанные на электромеханических реле, подобных тем, которые использовались в ранних телефонных коммутаторах. Тогда же в Университете штата Пенсильвания был разработан и первый электронный компьютер, основанный на технологии вакуумных ламп, использовавшихся в то время в радиоприемниках и военных радарах. Вакуумные лампы применялись для выполнения логических операций и хранения данных. Эта технология положила начало новой эре электронных цифровых компьютеров.

Информация о работе Поколения ЭВМ