Основные свойства информации

Автор работы: Пользователь скрыл имя, 14 Октября 2015 в 21:28, реферат

Описание работы

Фундаментальной чертой цивилизации является рост производства, потребления и накопления информации во всех отраслях человеческой деятельности. Вся жизнь человека, так или иначе, связана получением, накоплением и обработкой информации. Что бы человек ни делал: читает ли он книгу, смотрит ли он телевизор, разговаривает, он постоянно и непрерывно получает и обрабатывает информацию.

Содержание работы

стр.
Введение
4
Свойства информации
5
Носители данных
7
Операции с данными
8
Кодирование данных двоичным кодом
9
Кодирование целых и действительных чисел
10
Кодирование текстовых данных
10
Универсальная система кодирования текстовых данных
11
Кодирование графических данных
12
Кодирование звуковой информации
14
Основные структуры данных
15
Единицы измерения данных
15
Информатика и её задачи
16
Истоки и предпосылки информатики
17
Список использованной литературы

Файлы: 1 файл

№М561 Журавлев Инф. свойства.doc

— 422.00 Кб (Скачать файл)

 

Кодирование целых и действительных чисел

Целые числа кодируются двоичным кодом достаточно просто - необходимо взять целое число и делить его пополам до тех пор, пока частное не будет равно единице. Совокупность остатков от каждого деления, записанная справа налево вместе с последним частным, и  образует двоичный аналог десятичного числа.

Для кодирования целых чисел от 0 до 255 достаточно иметь 8 разрядов двоичного кода (8 бит). 16 бит позволяют закодировать целые числа от 0 до 65535, а 24 – уже более 16,5 миллионов различных значений.

Для кодирования действительных чисел используют 80-разрядное кодирование. При этом число предварительно преобразовывают в нормализованную форму:

3,1414926 = 0,31415926 × 101

300 000     = 0,3 × 106

Первая часть числа называется мантиссой, а вторая – характеристикой. Большую часть из 80 бит отводят для хранения мантиссы (вместе со знаком) и некоторое фиксированное количество разрядов отводят для хранения характеристики.

Кодирование текстовых данных

Если каждому символу алфавита сопоставить определённое целое число, то с помощью двоичного кода можно кодировать текстовую информацию. Восьми двоичных разрядов достаточно для кодирования 256 различных символов. Это хватит, чтобы выразить различными комбинациями восьми битов все символы английского и русского языков, как строчные, так и прописные, а также знаки препинания, символы основных арифметических действий и некоторые общепринятые специальные символы.

Технически это выглядит очень просто, однако всегда существовали достаточно веские организационные сложности. В первые годы развития вычислительной техники они были связаны с отсутствием необходимых стандартов, а в настоящее время вызваны, наоборот, изобилием одновременно действующих и противоречивых стандартов. Для того чтобы весь мир одинаково кодировал текстовые данные, нужны единые таблицы кодирования, а это пока невозможно из-за противоречий между символами национальных алфавитов, а также противоречий корпоративного характера.

Для английского языка, захватившего де-факто нишу международного средства общения, противоречия уже сняты. Институт стандартизации США ввёл в действие систему кодирования ASCII (American Standard Code for Information Interchange – стандартный код информационного обмена США). В системе ASCII закреплены две таблицы кодирования базовая и расширенная. Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255.

Первые 32 кода базовой таблицы, начиная с нулевого, отданы производителям аппаратных средств. В этой области размещаются управляющие коды, которым не соответствуют ни какие символы языков. Начиная с 32 по 127 код размещены коды символов английского алфавита, знаков препинания, арифметических действий и некоторых вспомогательных символов.

Кодировка символов русского языка, известная как кодировка Windows-1251, была введена «извне» - компанией Microsoft, но, учитывая широкое распространение операционных систем и других продуктов этой компании в России, она глубоко закрепилась и нашла широкое распространение.

Другая распространённая кодировка носит название КОИ-8 (код обмена информацией, восьмизначный) – её происхождение относится к временам действия Совета Экономической Взаимопомощи государств Восточной Европы. Сегодня кодировка КОИ – 8 имеет широкое распространение в компьютерных сетях на территории России и в российском секторе Интернета.

Международный стандарт, в котором предусмотрена кодировка символов русского языка, носит названия ISO (International Standard Organization – Международный институт стандартизации). На практике данная кодировка используется редко.

Универсальная система кодирования текстовых данных.

Если проанализировать организационные трудности, связанные с созданием единой системы кодирования текстовых данных, то можно прийти к выводу, что они вызваны ограниченным набором кодов (256). В то же время, очевидно, что если, кодировать символы не восьмиразрядными двоичными числами, а числами с большим разрядом то и диапазон возможных значений кодов станет на много больше. Такая система, основанная на 16-разрядном кодировании символов, получила название универсальной – UNICODE.  Шестнадцать разрядов позволяют обеспечить уникальные коды для 65 536 различных символов – этого поля вполне достаточно для размещения в одной таблице символов большинства языков планеты.

Несмотря на тривиальную очевидность такого подхода, простой механический переход на данную систему долгое время сдерживался из-за недостатков ресурсов средств вычислительной техники (в системе кодирования UNICODE все текстовые документы становятся автоматически вдвое длиннее). Во второй половине 90-х годов технические средства достигли необходимого уровня обеспечения ресурсами, и сегодня мы наблюдаем постепенный перевод документов и программных средств на универсальную систему кодирования.

Ниже приведены таблицы кодировки ASCII.

 

Кодирование графических данных

Если рассмотреть с помощью увеличительного стекла чёрно-белое графическое изображение, напечатанное в газете или книге, то можно увидеть, что оно состоит из мельчайших точек, образующих характерный узор, называемый растром. Поскольку линейные координаты и индивидуальные свойства каждой точки (яркость) можно выразить с помощью целых чисел, то можно сказать, что растровое кодирование позволяет использовать двоичный код для представления графических данных. Общепринятым на сегодняшний день считается представление чёрно-белых  иллюстраций в виде комбинации точек с 256 градациями серого цвета, и, таким образом, для кодирования яркости любой точки обычно достаточно восьмиразрядного двоичного числа.

Для кодирования цветных графических изображений применяется принцип декомпозиции произвольного цвета на основные составляющие. В качестве таких составляющих используют три основные цвета: красный (Red), зелёный (Green) и синий (Blue). На практике считается, что любой цвет, видимый человеческим глазом, можно получить механического смешения этих трёх основных цветов.  Такая система кодирования получила названия RGB по первым буквам основных цветов.

Режим представления цветной графики с использованием 24 двоичных разрядов называется полноцветным (True Color).

Каждому из основных цветов можно поставить в соответствие дополнительный цвет, т.е. цвет, дополняющий основной цвет до белого. Нетрудно заметить, что для любого из основных цветов дополнительным будет цвет, образованный суммой пары остальных основных цветов. Соответственно дополнительными цветами являются: голубой (Cyan), пурпурный (Magenta) и жёлтый (Yellow). Принцип декомпозиции произвольного цвета на составляющие компоненты можно применять не только для основных цветов, но и для дополнительных, т.е. любой цвет можно представить в виде суммы голубой, пурпурной и жёлтой составляющей. Такой метод кодирования цвета принят в полиграфии, но в полиграфии используется ещё и четвёртая краска – чёрная (Black). Поэтому данная система кодирования обозначается четырьмя буквами CMYK (чёрный цвет обозначается буквой К, потому, что буква В уже занята синим цветом), и для представления цветной графики в этой системе надо иметь 32 двоичных разряда. Такой режим также называется полноцветным.

Если уменьшить количество двоичных разрядов, используемых для кодирования цвета каждой точки, то можно сократить объём данных, но при этом диапазон кодируемых цветов заметно сокращается. Кодирование цветной графики 16-разрядными двоичными числами называется режимом High Color.

При кодировании информации о цвете с помощью восьми бит данных можно передать только 256 оттенков. Такой метод кодирования цвета называется индексным.

Кодирование звуковой информации

Приёмы и методы работы со звуковой информацией пришли в вычислительную технику наиболее поздно. К тому же, в отличие от числовых, текстовых и графических данных, у звукозаписей не было столь же длительной и проверенной истории кодирования. В итоге методы кодирования звуковой информации двоичным кодом далеки от стандартизации. Множество отдельных компаний разработали свои корпоративные стандарты, но среди них можно выделить два основных направления.

  1. Метод FM (Frequency Modulation) основан та том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, а, следовательно, может быть описан числовыми параметрами, т.е. кодом. В природе звуковые сигналы имеют непрерывный спектр, т.е. являются аналоговыми. Их разложение в гармонические ряды и представление в виде дискретных  цифровых сигналов выполняют специальный устройства – аналогово-цифровые преобразователи (АЦП). Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). При таких преобразованиях неизбежны потери информации, связанные с методом кодирования, поэтому качество звукозаписи обычно получается не вполне удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окрасом характерным для электронной музыки. В то же время данный метод копирования обеспечивает весьма компактный код,  поэтому он нашёл применение ещё в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.
  2. Метод таблично волнового (Wave-Table) синтеза лучше соответствует современному уровню развития техники. В заранее подготовленных таблицах хранятся образцы звуков для множества различных музыкальных инструментах. В технике такие образцы называют сэмплами. Числовые коды выражают тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые параметры среды, в которой происходит звучание, а также прочие параметры, характеризующие особенности звучания.  Поскольку в качестве образцов исполняются реальные звуки, то его качество получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов. 

Основные структуры данных

Работа с большими наборами данных автоматизируется проще, когда данные упорядочены, т.е. образуют заданную структуру. Существуют три основных типа структур данных: линейная, иерархическая и табличная. Самая простейшая структура данных – линейная. Она представляет собой список. Для быстрого поиска информации существует иерархическая структура. Для больших массив поиск данных в иерархической структуре намного проще, чем в линейной, однако и здесь необходима навигация, связанная с необходимостью просмотра. 

Основным недостатком иерархических структур данных является увеличенный размер пути доступа. Очень часто бывает так, что длина маршрута оказывается больше, чем длина самих данных, к которым он ведёт. Поэтому в информатике применяют методы для регуляризации иерархических структур с тем, чтобы сделать путь доступа компактным. Один из методов получил название дихотомии. В иерархической структуре, построенной методом дихотомии, путь доступа к любому элементу можно представить как через рациональный лабиринт с поворотами налево (0) и направо (1) и, таким образом, выразить путь доступа в виде компактной двоичной записи.

Единицы измерения данных

Наименьшей единицей после бита является байт (1 байт = 8 бит = 1 символ). Поскольку одним байтом, как правило, кодируется один символ текстовой информации, то для текстовых документов размер в байтах соответствует лексическому объёму в символах. Более крупная единица измерения килобайт (1 Кб = 1024 байт). Более крупные единицы образуются добавлением префиксов мега-, гига-, тера-; в более крупных единицах пока нет практической надобности:

1 Мб = 1048580 байт;

1 Гб = 10737740000 байт.

1 Тб =  1024 Гб.

Информатика и её задачи

Информатика – область человеческой деятельности, связанная с процессами преобразования информации с помощью компьютеров и взаимодействия со средой их применения. Сама информатика появилась с появлением персональных компьютеров. В переводе с французского языка информатика – автоматическая обработка информации.

В информатике всё жёстко ориентировано на эффективность. Вопрос, как сделать ту или иную операцию, для информатики является важным, но не основным. Основным же является вопрос, как сделать данную операцию эффективно.

Предмет информатики составляет следующие понятия:

  • аппаратное обеспечение средств вычислительной техники;
  • программное обеспечение средств вычислительной техники;
  • средства взаимодействия аппаратного и программного обеспечения;
  • средства взаимодействия человека с аппаратными и программными средствами.

Итак, в информатике особое внимание уделяется вопросам взаимодействия. Для этого было даже выдвинуто специальное понятие – интерфейс. Пользовательским интерфейсом называют методы и средства взаимодействия человека с аппаратными и программными средствами. Соответственно, существуют аппаратные, программные и аппаратно-программные интерфейсы.

Основной задачей информатики является систематизация приёмов и методов работы с аппаратными и программными средствами вычислительной техники. Цель систематизации состоит в выделении, внедрении и развитии передовых, наиболее эффективных технологий, в автоматизации этапов работы с данными, а также в методическом обеспечении новых технологических исследований. В составе основной задачи информатики сегодня можно выделить следующие направления для практических приложений:

  • архитектура вычислительных систем;
  • интерфейсы вычислительных систем;
  • программирование;
  • преобразование данных;
  • защита информации;
  • автоматизация;
  • стандартизация.

  На всех  этапах технического обеспечения  информационных процессов для  информатики ключевым понятием  является эффективность. Для аппаратных средств под эффективностью понимают отношение производительности оборудования к его стоимости. Для программного обеспечения под эффективностью понимают производительность лиц, работающих с ними (пользователей). В программировании под эффективностью понимают объём программного кода, создаваемого программистами в единицу времени.

Истоки и предпосылки информатики

Кроме Франции термин информатика используется в ряде стран Восточной Европы. В то же время, в большинстве стран Западной Европы и США используется другой термин – наука о средствах вычислительной техники (Computer Science).

В качестве источников информатики обычно называют две науки – документалистику и кибернетику. Документалистика сформировалась в конце XIX века в связи с бурным развитием производственных отношений. Её целью являлось повышение эффективность документооборота.

Основы близкой к информатике технической науки кибернетики были заложены трудами по математической логике американского математика Норберта Винера, опубликованными в 1948 году, а само названия происходит от греческого слова kyberneticos – искусный в управлении.

Впервые термин кибернетика ввёл французский физик Ампер в первой половине XIX века. Он занимался разработкой единой системы классификации всех наук и обозначил этим термином гипотетическую науку об управлении, которой в то время не существовало, но которая, по его мнению, должна была существовать.

Информация о работе Основные свойства информации