Компьютерная графика

Автор работы: Пользователь скрыл имя, 11 Января 2015 в 18:03, реферат

Описание работы

Целью работы является рассмотрение различных способов представления мультимедийной информации в компьютере.
Для достижения поставленной цели необходимо решить следующие задачи:
1. Выявить особенности представления различных видов графической информации.
2. Рассмотреть различные цветовые схемы, а также графические форматы.
3. Написать программу для наглядного представления построения некоторых видов фракталов.

Файлы: 1 файл

диплом.DOC

— 1.37 Мб (Скачать файл)

Не следует забывать и о шрифтах. Зачастую в файле EPS оказываются только названия шрифтов и при выводе подставляются другие, что никак не соответствует замыслу дизайнера. Поэтому шрифты должны быть конвертированы в кривые, либо внедрены в файл, или приложены отдельными файлами.

Глава II. Аудио- и видеоинформация.

2.1.  Аудиоинформация

Любой мультимедиа–ПК имеет в своем составе плату–аудиоадаптер. Для чего она нужна? С легкой руки фирмы Creative Labs  (Сингапур), назвавшей свои первые аудиоадаптеры звонким словом Sound Blaster, эти устройства часто именуются “саундбластерами”. Аудиоадаптер дал компьютеру не только стереофоническое звучание, но и возможность записи на внешние носители звуковых сигналов. Как уже было сказано ранее, дисковые накопители ПК совсем не подходят для записи обычных (аналоговых) звуковых сигналов, так как рассчитаны для записи только цифровых сигналов, которые практически не искажаются при их передаче по линиям связи.

Аудиоадаптер имеет аналого–цифровой преобразователь (АЦП), периодически определяющий уровень звукового сигнала и превращающий этот отсчет в цифровой код. Он и записывается на внешний носитель уже как цифровой сигнал.

Цифровые выборки реального звукового сигнала хранятся в памяти компьютера (например, в виде WAV–файлов). Считанный с диска цифровой сигнал подается на цифро–аналоговый преобразователь (ЦАП), который преобразует цифровые сигналы в аналоговые. После фильтрации их можно усилить и подать на акустические колонки для воспроизведения. Важными параметрами аудиоадаптера являются частота квантования звуковых сигналов и разрядность квантования.

Частоты квантования показывают, сколько раз в секунду берутся выборки сигнала для преобразования в цифровой код. Обычно они лежат в пределах от 4–5 КГц до 45–48 КГц.

Разрядность квантования характеризует число ступеней квантования и изменяется степенью числа 2. Так, 8–разрядные аудиоадаптеры имеют 28=256 степеней, что явно недостаточно для высококачественного кодирования звуковых сигналов. Поэтому сейчас применяются в основном 16-разрядные аудиоадаптеры, имеющие 216 =65536 ступеней квантования —  как у звукового компакт–диска.

Другой способ воспроизведения звука заключается в его синтезе. При поступлении на синтезатор некоторой управляющей информации по ней формируется соответствующий выходной сигнал. Современные аудиоадаптеры синтезируют музыкальные звуки двумя способами: методом частотной модуляции FM (Frequency Modulation) и с помощью волнового синтеза (выбирая звуки из таблицы звуков, Wave Table). Второй способ обеспечивает более натуральное звучание.

Частотный синтез (FM) появился в 1974 году (PC–Speaker). В 1985 году появился AdLib, который, используя частотную модуляцию, был способен играть музыку. Новая звуковая карта SoundBlaster уже могла записывать и воспроизводить звук. Стандартный FM–синтез имеет средние звуковые характеристики, поэтому на картах устанавливаются сложные системы фильтров против возможных звуковых помех.

Суть технологии WT–синтеза состоит в следующем. На самой звуковой карте устанавливается модуль ПЗУ с “зашитыми” в него образцами звучания настоящих музыкальных инструментов — сэмплами, а WT–процессор с помощью специальных алгоритмов даже по одному тону инструмента воспроизводит все его остальные звуки. Кроме   того многие производители оснащают свои звуковые карты модуляторами ОЗУ, так что есть возможность не только записывать произвольные сэмплы, но и подгружать новые инструменты.

Кстати, управляющие команды для синтеза звука могут поступать на звуковую карту не только от компьютера, но и от другого, например, MIDI (Musical Instruments Digital Interface) устройства. Собственно MIDI определяет протокол передачи команд по стандартному интерфейсу. MIDI–сообщение содержит ссылки на ноты, а не запись музыки как таковой. В частности, когда звуковая карта получает подобное сообщение, оно расшифровывается (какие ноты каких инструментов должны звучать) и отрабатывается на синтезаторе. В свою очередь компьютер может через MIDI управлять различными “интеллектуальными” музыкальными инструментами с соответствующим интерфейсом.

Для электронных синтезаторов обычно указывается число одновременно звучащих инструментов и их общее число (от 20 до 32). Также важна и программная совместимость аудио адаптера с типовыми звуковыми платформами (SoundBlaster, Roland, AdLib, Microsoft Sound System, Gravis Ultrasound и др.).

В качестве примера рассмотрим состав узлов одного из мощных аудиоадаптеров — SoundBlaster AWE 32 Value. Он содержит два микрофонных малошумящих усилителя с автоматической регулировкой усиления для сигналов, поступающих от микрофона, два линейных усилителя для сигналов, поступающих с линии, с проигрывателя звуковых дисков или музыкального синтезатора. Кроме того, сюда входят программно–управляемый электронный микшер, обеспечивающий смешение сигналов от различных источников и регулировку их уровня и стерео баланса, 20-голосый синтезатор музыкальных звуков частотной модуляции FM, программно управляемый волновой (табличный) синтезатор музыкальных звуков и звуковых эффектов (16 каналов, 32 голоса, 128 инструментов), аналого–цифровой 16-разрядный преобразователь для превращения аналогового сигнала с выхода микшера в цифровой сигнал, систему сжатия цифровой информации с возможностью применения расширенного звукового процессора ASP. Наконец, аудиоадаптер имеет цифроаналоговый преобразователь (ЦАП) для превращения цифровых сигналов, несущих информацию о звуке, в аналоговый сигнал, адаптивный электронный фильтр на выходе ЦАП, снижающий помехи от квантования сигнала, двухканальный усилитель мощности по 4 Вт на канал с ручным и программно–управляемым регулятором громкости и MIDI–разъем для подключения музыкальных инструментов.

Как видно из этого перечня, аудиоадаптер — достаточно сложное техническое устройство, построенное на основе использования последних достижений в аналоговой и цифровой аудиотехнике.

В новейшие звуковые карты входит цифровой  сигнальный процессор DSP (Digital Signal Processor) или расширенный сигнальный процессор ASP (Advanced Signal Processor). Они используют совершенные алгоритмы для цифровой компрессии и декомпрессии звуковых сигналов, для расширения базы стереозвука, создания эха и обеспечения объемного (квадрофонического)  звучания. Программа поддержки ASP QSound поставляется бесплатно фирмой Intel на CD-ROM “Software Developer CD”. Важно отметить, что процессор ASP используется при обычных двухканальных стереофонических записи и воспроизведении звука. Его применение не загружает акустические тракты мультимедиа компьютеров.

2.1.1. Кодирование аудиоинформации

Звук представляет собой распространяющуюся чаще всего в воздухе, воде или другой среде волну с непрерывно изменяющейся интенсивностью и частотой. 
Человек может воспринимать звуковые волны (колебания воздуха) с помощью слуха в форме звука различая при этом громкость и тон. 
Чем больше интенсивность звуковой волны, тем громче звук, чем больше частота волны, тем выше тон звука.

 

Так как компьютер работает с числами, звуки и музыка должны быть представлены в числовом виде, или, как принято говорить, закодированы. Произвольная аудиоинформация при кодировании занимает много места, поэтому часто используют сжатые аудиоформаты. Музыка занимает меньше места, так как хорошо формализуется – ее можно записать с помощью нот.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитывать по общей формуле N = 2I.

Например, пусть глубина кодирования звука составляет 16 битов, в таком случае количество уровней громкости звука равно:

N = 2I = 216 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему – 1111111111111111.

Звук представляет собой волну, распространяющуюся в атмосфере, и воспринимаемую человеком с помощью органов слуха. Громкость звука – это его кажущаяся сила. Измеряется громкость в децибелах (дБ). Громкость обычного разговора около 50 дБ, шум на улице часто превышает 70 дБ, а громкость взлетающего самолета составляет 120 дБ. Порог чувствительности человеческого уха около 20 дБ.

Характеризуется звуковая волна изменением во времени частоты и амплитуды сигнала. Графически звуковая волна описывается кривой, задающей зависимость амплитуды от времени. Частота основных колебаний определяет высоту звука. Но звуки одной частоты могут иметь разный тембр.

Чтобы закодировать звук, необходимо измерять амплитуду сигнала через определенные промежутки времени. На каждом временном отрезке определяется средняя амплитуда сигнала. Графически такое преобразование описывается множеством столбиков.

При восстановлении исходной кривой ее вид будет искажен. Искажения тем больше, чем больше ширина столбиков, то есть чем реже определяется текущая амплитуда. Чем промежутки времени меньше, тем выше будет качество закодированного звука. Частота, с которой определяется амплитуда сигнала, называется частотой дискретизации.

Амплитуда сигнала, определенная в каждый момент времени, также должна быть представлена в числовом виде. В простейшем случае можно использовать один бит – есть звук или его нет. Но на практике такое кодирование не имеет смысла. Минимально для кодирования амплитуды сигнала отводятся восемь бит – один байт, что позволяет описать двести пятьдесят шесть уровней громкости. Качество звука при этом получается не слишком высокое. Если и частота дискретизации невелика, то при воспроизведении будут присутствовать сильные искажения. Значительно лучшее качество получается при использовании двух байт, что позволяет задать более шестидесяти пяти тысяч разных значений амплитуды. В большинстве случаев двух байт достаточно для получения высококачественной записи звука, хотя иногда применяют 24 бита – три байта для кодирования амплитуды сигнала.

Для кодирования звуков следует использовать частоту вдвое большую, чем частота кодируемого звука. Объяснение этому довольно простое. Звуковая волна состоит из двух полупериодов: положительного и отрицательного. Поэтому для ее имитации необходимо иметь хотя бы по одной выборке на каждом из полупериодов. Так как человек воспринимает звуки в диапазоне частот от 20 до 20000 Гц, то для качественного кодирования необходимо использовать частоту вдвое большую, чем 20000, то есть 40000 Гц. Тогда сохраненные выборки позволят воспроизводить звуковую волну внутри диапазона, воспринимаемого человеческим ухом. Для качественного кодирования звука принято иметь некоторый запас, поэтому при цифровой звукозаписи используется частота дискретизации 44100 Гц и 48000 Гц. Это означает, что за каждую секунду звукозаписи в цифровом виде записывается более 44000 единиц информации, последовательность которых моделирует звук длительностью в одну секунду.

Для того чтобы записать стереозвук, следует одновременно кодировать два независимых канала звука. При этом чтобы получить хорошее качество, нужно использовать два байта для кодирования и частоту дискретизации 44100 Гц для каждого из каналов. Именно так кодируется звук на компакт-дисках. При этом одна минута закодированного звука займет более 10 Мб.

В некоторых случаях можно обойтись более низким качеством, сравнимым с качеством записи диктофона. Для того чтобы закодировать голос, не предъявляя повышенных требований к качеству звучания, можно использовать один байт при кодировании и один монофонический канал. Частоту дискретизации также можно понизить. Чтобы разбирать отдельные слова и понимать их смысл, достаточно частоты дискретизации 8000 Гц. С такими параметрами минута закодированного звука займет менее 480 Кб.

Для повышения качества кодирования используют более высокие частоты дискретизации, до 96000 Гц, однако такое качество требуется исключительно при работе в профессиональных звукозаписывающих студиях.

Современные компьютеры часто используются при создании и воспроизведении музыки. Музыкальное произведение можно закодировать как любой другой звук, однако это займет много места. Кроме того, возникнут трудности при изменении партий отдельных инструментов. Проще указать инструмент и задать, какую ноту и как долго он должен играть. Для воспроизведения музыки компьютер синтезирует разнообразные звуки, которые издают музыкальные инструменты.

В компьютерной музыке используется аббревиатура MIDI, которая расшифровывается как Musical Instrument Digital Interface (Цифровой интерфейс музыкальных инструментов). Имеется стандарт, описывающий основные используемые инструменты, – GM (General MIDI – единый MIDI). В стандарте описаны пятнадцать групп мелодических инструментов и одна группа ударных инструментов. Мелодический набор состоит из пианино, органов, гитар, струнных, духовых и тому подобных инструментов. За всеми инструментами закреплены номера, например, нулевой номер имеет акустический рояль. Кроме GM используются стандарты GS (General Synth – единый синтез), XG (Extended General – единый расширенный), GM2 (General MIDI 2). Все эти стандарты не заменяют собой GM, а лишь дополняют его новыми инструментами и дополнительными параметрами звучания.

Несмотря на то, что инструменты и тембры стандартизированы в GM, а MIDI-файл содержит только номера инструментов и тембров, этот файл по-разному будет воспроизводиться на разных звуковых картах. Это объясняется несколькими причинами. Так, в стандарте описаны только названия инструментов и тембров. Такие параметры звука, как громкость, окраска и другие не определены и выбираются производителями звуковых карт произвольно.

Кроме того, на качество воспроизведения звука сильно сказывается метод, которым этот звук воспроизводится. Применяют два основных метода синтеза звуков. Более простой метод называется частотным синтезом (FM-синтез). Для каждой ноты каждого инструмента определена частота и амплитуда звука, и звуковая плата компьютера синтезирует звук. Однако при этом синтезированные звуки получаются не слишком похожими на звучание реальных инструментов. В современных звуковых платах частотный синтез не используется.

Информация о работе Компьютерная графика