Водород. Применение водорода

Автор работы: Пользователь скрыл имя, 23 Декабря 2015 в 06:47, реферат

Описание работы

Водород (Hudrogenium) был открыт в первой половине XVI века немецким врачом и естествоиспытателем Парацельсом. В 1776 г. Кавендиш (Англия) установил его свойства и указал отличия от других газов. Водород имеет три изотопа: протий ¹Н, дейтерий ²Н или D, тритий ³Н или Т. Их массовые числа равны 1, 2 и 3. Протий и дейтерий стабильны, тритий – радиоактивен (период полураспада 12,5 лет). В природных соединениях дейтерий и протий в среднем содержатся в отношении 1:6800 (по числу атомов). Тритий в природе находится в ничтожно малых количествах.

Содержание работы

Введение.
Водород. Положение элемента в периодической системе Д.И. Менделеева.
Общие сведения и физические свойства водорода.
Водород в природе.
Получение водорода.
Водород и Вселенная.
Водород и Жизнь.
Водород и Наука.
Водород и Практика.
Водород и Будущее.
Хранение и транспортировка.
Применение водорода.
Нахождение водорода в природе.
Список использованной литературы.

Файлы: 1 файл

ВОДОРОД.docx

— 81.94 Кб (Скачать файл)

Возможен также микробиологический способ получения водорода. В почве существует ряд микроорганизмов, которые выделяют водород в виде побочного продукта. В случае решения задачи дешевого получения водородного топлива и разработки технологии его накопления, хранения и транспортировки человечество получит неиссякаемый источник экологически чистого энергоносителя, встроенного в естественную систему круговорота воды. Наиболее старый способ получения водорода - электролиз воды, при котором, пропуская постоянный ток, на катоде накапливают водород, а на аноде - кислород. Такая технология делает его слишком дорогим энергоносителем. Поэтому пока водород используется только для запуска космических аппаратов с водородно-кислородными двигателями. Чаще для получения водорода используют технологию горячей переработки водяного пара при температуре  
700-900 °С с участием легкого бензина и тяжелого жидкого топлива, отбирающего кислород. Это тоже дорогой способ. Существует несколько проектов дешевого получения водорода. Например, предлагается построить в Гренландии несколько грандиозных электростанций, которые будут использовать талую воду ледников для производства электроэнергии, а энергия будет на месте затрачиваться на электролиз для получения водорода, его сжижения и транспортировку по трубопроводам и в танкерах в Европу и Америку. Другие проекты - использование энергии атомных и специальных солнечных электростанций для получения водорода путем электролиза воды.

Однако сама природа дает рецепт для получения водорода без огромных затрат энергии. На поверхности частиц взвесей в воде существуют адсорбированные и закрепленные на поверхности ферменты с высокой специфичностью каталитического действия. Они способны расщеплять одну-единственную связь в одном из веществ при очень высокой активности в обычных условиях. Иммобилизованные ферменты могут быть использованы для получения водорода. Представьте себе горсть порошка с иммобилизованным на частицах ферментом. Порошок засыпают в банку с водой, стоящую на солнце, и в ней начинается активное выделение водорода. Уже делаются попытки создания такого "магического порошка".

Возможен также микробиологический способ получения водорода. В почве существует ряд микроорганизмов, которые выделяют водород в виде побочного продукта. В случае решения задачи дешевого получения водородного топлива и разработки технологии его накопления, хранения и транспортировки человечество получит неиссякаемый источник экологически чистого энергоносителя, встроенного в естественную систему круговорота воды.

В ограниченном масштабе применяют способ взаимодействия водяного пара с фосфором и термического разложения углеводородов:

СН4 (1000 °С) = С + 2 Н2 (выделяется в виде газа).

В некоторых случаях водород получают в результате каталитического расщепления метанола с водяным паром

СН3ОН + Н2О (250 °С) = СО2 + 3 Н2,

или в результате каталитического термического разложения аммиака

2 NH3 (950 °С) --> N2 + 3 H2.

Однако эти исходные соединения получают в больших масштабах из водорода; между тем получение из них водорода является особенно простым и может быть использовано в таких производствах, которые потребляют его в сравнительно малых количествах (менее 500 м3/сутки).

Важнейшие методы получения водорода:

1. Растворение цинка в  разбавленной соляной кислоте

Zn + 2 HCl = ZnCl2 + H2

Этот способ чаще всего применяют в лабораториях.

Вместо соляной кислоты можно также использовать разбавленную серную кислоту; однако если концентрация последней слишком высока, то выделяющийся газ легко загрязняется SO2 и H2S. При использовании не вполне чистого цинка образуются ещё и другие соединения, загрязняющие водород, например AsH3 и PH3. Их присутствие и обусловливает неприятный запах получаемого этим способом водорода.

Для очистки водород пропускают через подкисленный раствор перманганата или бихромата калия, а затем через раствор едкого кали, а также через концентрированную серную кислоту или через слой силикагеля для освобождения от влаги. Мельчайшие капельки жидкости, захваченные водородом при его получении и заключённые в пузырьках газа, лучше всего устранять при помощи фильтра из плотно спрессованной обычной или стеклянной ваты.

Если приходится пользоваться чистым цинком, то к кислоте необходимо добавить две капли платинохлористоводородной кислоты или сернокислой меди, иначе цинк не вступает в реакцию.

2. Растворение алюминия  или кремния в едкой щёлочи

2 Al + 2 NaOH + 6 H2O = 2 Na[Al(OH)4] + 3 H2

Si + 2 KOH + H2O = Na2SiO3 + 2 H2

Эти реакции применяли раньше для получения водорода в полевых условиях (для наполнения аэростатов). Для получения 1 м3водорода (при 0 °С и 760 мм рт. ст.) требуется только 0,81 кг алюминия или 0,63 кг кремния по сравнению с 2,9 кг цинка или 2,5 кг железа.

Вместо кремния также применяют ферросилиций (кремниевый метод). Смесь ферросилиция и раствора едкого натра, введённая в употребление незадолго до первой мировой войны во французской армии под названием гидрогенита, обладает свойством после поджигания тлеть с энергичным выделением водорода по следующей реакции:

Si + Ca(OH)2 + 2 NaOH = Na2SiO3 + CaO + 2 H2.

3. Действие натрия на  воду

2 Na + 2 H2O = 2 NaOH + H2

Ввиду того, что чистый натрий реагирует в этом случае слишком энергично, его чаще вводят в реакцию в виде амальгамы натрия; этот способ применяют преимущественно для получения водорода, когда им пользуются для восстановления "in statu nascendi". Аналогично натрию с водой реагируют и остальные щелочные и щелочноземельные металлы.

4. Действие гидрида кальция  на воду

СaН2 + 2 H2O = Сa(OH)2 + 2 H2

Этот метод является удобным способом получения водорода в полевых условиях. Для получения 1 м3 водорода теоретически необходимо 0,94 кг СаН2 и, кроме воды, не требуется никаких других реактивов.5. Пропускание водяного пара над раскалённым докрасна железом

4 Н2О + 3 Fe = Fe3O4 + 4 H2

При помощи этой реакции в 1783 г. Лавуазье впервые аналитически доказал состав воды. Образующийся при этой реакции оксид железа нетрудно восстановить до металлического железа, пропуская над ним генераторный газ так, что пропускание водяного пара над одним и тем же железом можно провести произвольное число раз. Этот метод долгое время имел большое промышленное значение. В небольших масштабах его применяют и в настоящее время.

6. Пропускание водяного  пара над коксом.

При температуре выше 1000 °С реакция идёт главным образом по уравнению

Н2О + С = СО + Н2.

Вначале получают водяной газ, т. е. смесь водорода и монооксида углерода с примесью небольших количеств углекислого газа и азота. От углекислого газа легко освобождаются промыванием водой под давлением. Монооксид углерода и азот удаляют при помощи процесса Франка-Каро-Линде, т. е. сжижением этих примесей, что достигается охлаждением жидким воздухом до -200 °С. Следы СО удаляют, пропуская газ над нагретой натронной известью

СО + NaOH = HCOONa - формиат натрия.

Этот метод даёт очень чистый водород, который используют, например, для гидрогенизации жиров.

Чаще, однако, водяной газ в смеси с парами воды при температуре 400 °С пропускают над соответствующими катализаторами, например над оксидом железа или кобальта (контактный способ получения водяного газа). В этом случае СО реагирует с водой по уравнению

СО + Н2Опар = СО2 + Н2 ("конверсия СО").

Образующийся при этом СО2 поглощается водой (под давлением). Остаток монооксида углерода (~1 об. %) вымывают аммиачным раствором однохлористой меди. Применяемый в этом способе водяной газ получают пропусканием водяного пара над раскалённым коксом. В последнее время всё больше используют взаимодействие водяного пара с пылевидным углём (превращение угольной пыли в газы). Полученный таким способом водяной газ содержит обычно большое количество водорода. Выделяемый из водяного газа водород (содержащий азот) применяют главным образом для синтеза аммиака и гидрирования угля.

7. Фракционное сжиженнее коксового газа.

Подобно получению из водяного газа, водород можно получать фракционным сжижением коксового газа, основной составной частью которого является водород.

Сначала коксовый газ, из которого предварительно удаляют серу, очищают от СО2 промыванием водой под давлением с последующей обработкой раствором едкого натра. Затем постепенно освобождают от остальных примесей ступенчатой конденсацией, проводимой до тех пор, пока не остаётся только водород; от других примесей его очищают промыванием сильно охлаждённым жидким азотом. Этот метод применяют главным образом, чтобы получить водород для синтеза аммиака.

8. Взаимодействие метана  с водяным паром (разложение метана).

Метан взаимодействует с водяным паром в присутствии соответствующих катализаторов при нагревании (1100 °С) по уравнению

СН4 + Н2Опар + 204 кДж (при постоянном давлении).

Необходимое для реакции тепло следует подводить или извне, или применяя "внутреннее сгорание", т. е. подмешивая воздух или кислород таким образом, чтобы часть метана сгорала до диоксида углерода

СН4 + 2 О2 = СО2 + 2 Н2Опар + 802 кДж (при постоянном давлении).

При этом соотношение компонентов выбирают с таким расчётом, чтобы реакция в целом была экзотермичной

12 СН4 + 5 Н2Опар + 5 О2 = 29 Н2 + 9 СО + 3 СО2 + 85,3 кДж.

Из монооксида углерода посредством "конверсии СО" также получают водород. Удаление диоксида углерода производят вымыванием водой под давлением. Получаемый методом разложения метана водород используют главным образом при синтезе аммиака и гидрировании угля.

9. Взаимодействие водяного  пара с фосфором (фиолетовым).

2 Р + 8 Н2О = 2 Н3РО4 + 5 Н2

Обычно процесс проводят таким образом: пары фосфора, получающиеся при восстановлении фосфата кальция в электрической печи, пропускают вместе с водяным паром над катализатором при 400-600 °С (с повышением температуры равновесие данной реакции смещается влево). Взаимодействие образовавшейся вначале Н3РО4 с фосфором с образованием Н3РО3 и РН3 предотвращают быстрым охлаждением продуктов реакции (закалка). Этот метод применяют прежде всего, если водород идёт для синтеза аммиака, который затем перерабатывают на важное, не содержащее примесей удобрение - аммофос (смесь гидро- и дигидрофосфата аммония).

10. Электролитическое разложение  воды.

2 H2O = 2 H2 + O2

Чистая вода практически не проводит тока, поэтому к ней прибавляются электролиты (обычно КОН). При электролизе водород выделяется на катоде. На аноде выделяется эквивалентное количество кислорода, который, следовательно, в этом методе является побочным продуктом.

Получающийся при электролизе водород очень чист, если не считать примеси небольших количеств кислорода, который легко удалить пропусканием газа над подходящими катализаторами, например над слегка нагретым палладированным асбестом. Поэтому его используют как для гидрогенизации жиров, так и для других процессов каталитического гидрирования. Водород, получаемый этим методом довольно дорог.

6. Водород  и Вселенная.

Когда-то люди обожествляли Солнце. Но теперь оно стало объектом точных исследований, и мы редко задумываемся о том, что само наше существование целиком и полностью зависит от происходящих на нем процессов. 

Каждую секунду Солнце излучает в космическое пространство энергию, эквивалентную примерно 4 млн. т массы. Эта энергия рождается в ходе слияния четырех ядер водорода, протонов, в ядро гелия; реакция идет в несколько стадий, а ее суммарный результат записывается вот таким уравнением:  
411Н+ → 42Не2+ +2е+ +26,7МэВ. 

Много это или мало –26,7 МэВ на один элементарный акт? Очень много: при «сгорании» 1 г протонов выделяется в 20 млн. раз больше энергии, чем при сгорании 1 г каменного угля. На Земле такую реакцию еще никто не наблюдал: она идет при температуре и давлении, существующих лишь в недрах звезд и еще не освоенных человеком.  
Мощность, эквивалентную ежесекундной убыли массы в 4 млн. т невозможно представить: даже при мощнейшем термоядерном взрыве в энергию превращается всего около 1 кг вещества. Но если отнести всю излучаемую Солнцем энергию к его полной массе, то выяснится невероятное: удельная мощность Солнца окажется ничтожно малой – много меньше, чем мощность такого «тепловыделяющего устройства», как сам человек.

Наше Солнце, по меньшей мере, наполовину состоит из водорода. Всего на Солнце обнаружено 69 химических элементов, но водород – преобладает. Его в 5,1 раза больше, чем гелия, и в 10 тыс. раз (не по весу, а по числу атомов) больше, чем всех металлов, вместе взятых, Этот водород расходуется не только на производство энергии. В ходе термоядерных процессов из него образуются новые химические элементы, а ускоренные протоны выбрасываются в околосолнечное пространство.  
Последнее явление, получившее название «солнечного ветра», было открыто сравнительно недавно во время исследования космического пространства с помощью искусственных спутников. Оказалось, что особенно сильные порывы этого «ветра» возникают во время хромосферных вспышек. Достигнув Земли, поток протонов, захваченный ее магнитным полем, вызывает полярные сияния и нарушает радиосвязь, а для космонавтов «солнечный ветер» представляет серьезную опасность.  
Но только ли этим ограничивается воздействие на Землю потока ядер солнечного водорода? По-видимому, нет. Во-первых, поток протонов рождает вторичное космическое излучение, достигающее поверхности Земли; во-вторых, магнитные бури могут влиять на процессы жизнедеятельности; в-третьих, захваченные магнитным полем Земли ядра водорода не могут не сказываться на ее массообмене с космосом.  
Судите сами: сейчас в земной коре из каждых 100 атомов 17 – это атомы водорода. Но свободного водорода на Земле практически не существует: он входит в состав воды, минералов, угля, нефти, живых существ… Только вулканические газы иногда содержат немного водорода, который в результате диффузии рассеивается в атмосфере. А так как средняя скорость теплового движения молекул водорода из-за их малой массы очень велика – она близка ко второй космической скорости, – то из слоев атмосферы эти молекулы улетают в космическое пространство.  
Но если Земля теряет водород, то почему она не может его получать от того же Солнца? Раз «солнечный ветер» – это ядра водорода, которые захватываются магнитным полем Земли, то почему бы им на ней не остаться?  
Ведь в атмосфере Земли есть кислород; реагируя с залетевшими ядрами водорода, он свяжет их, и космический водород рано или поздно выпадет на поверхность планеты в виде обыкновенного дождя. Более того, расчет показывает, что масса водорода, содержащегося в воде всех земных океанов, морей, озер и рек, точно равна массе протонов, занесенных «солнечным ветром» за всю историю Земли. Что это – простое совпадение?  
Мы должны сознавать, что наше Солнце, наше водородное Солнце, – это лишь заурядная звезда во Вселенной, что существует неисчислимое множество подобных звезд, удаленных от Земли на сотни, тысячи и миллионы световых лет. И кто знает, – может быть именно в диапазоне радиоизлучения межзвездного водорода (запомните – 21 сантиметр!) человечеству впервые удастся связаться с иноземными цивилизациями…  
 

Информация о работе Водород. Применение водорода