Очистка вод от нефтепродуктов

Автор работы: Пользователь скрыл имя, 28 Февраля 2015 в 22:27, доклад

Описание работы

Изобретение относится к нефтяной промышленности и экологии и может быть использовано для очистки поверхности природных и искусственных водоемов, сточных вод и жидких отходов производств от загрязнений нефтью и нефтепродуктами с одновременной утилизацией загрязнения микроорганизмами.

Файлы: 1 файл

очистка от нефтепродуктов.docx

— 133.85 Кб (Скачать файл)

биомасса штамма бактерий:  

Rhodococcus erythropolis HK-16 или 

Arthrobacter sp.HK-15 или 

 дрожжевого гриба Candida lipolytica КБП-3308 или  

Candida guilliermondii КБП-3175 или 

Pichia guilliermondii КБП-3205 

или их бактериально-дрожжевого консорциума 20-30

гидрофобный сорбент нефти на основе торфа остальное

 

http://www.freepatent.ru/patents/2318736

 

 

 

 

 

Изобретение касается очистки вод от нефтепродуктов сорбцией и может быть использовано, в частности, при доочистке ляльных (судовых промывочных) вод или сточных вод атомной энергетики от нефтепродуктов (НП) до ПДК открытых водоемов.

 

Так, действующая в настоящее время трехступенчатая схема очистки ляльных вод (фильтр грубой очистки, сепарации на сепараторе коалесцирующего типа СК-2,5 М и поролоновый фильтр тонкой очистки) обеспечивает снижение НП в водах с 50-100 до 5-20 мг/л, в то время как установленная для открытых водоемов (Кольский залив) норма не должна превышать 0,05 мг/л. Это значительно усложняет процесс очистки ляльных вод, так как прибывшие в порт суда обязаны сдать их для доочистки на нефтебазы.

 

 Сточные воды нефтеперерабатывающих  комплексов также доочищаются на поролоновых фильтрах, адсорбционная емкость которых в статических условиях составляет 20 мг/л (2 мас.) (Кожевников А.В. и др. Очистка производственных вод нефтеперерабатывающих заводов сорбционными и ионообменными методами. Труды Сев.-Зап. заочн. политехн. ин-та, 1975, N 32, с. 11-13).

 

 Известен способ очистки нефтесодержащих сточных вод путем контактного фильтрования через мелкозернистые слои различных материалов: кварц, уголь, кокс, стекло, полимеры, размер частиц фильтрующей загрузки 0,1-5 мм (патент Великобритании N 1340931, кл. В 01 D 29/08, 1973).

 

 Для удаления различных коллоидных  примесей из сточных вод, содержащих  нефтепродукты, предложено вводить  в них ALCL3 и гранулы пористого  полимера на основе олефинов  и стирола (патент Японии N 51-13949, 91691, 1976).

 

 Патентом США N 4066539, 210-36, 1978 предложено  использовать гранулы атактического полипропилена, поверхность которого покрыта мукой для удаления нефтяных загрязнений из воды и песка.

 

 Известно средство для абсорбции  и последующего отделения нефтяных  загрязнений с водной или твердой  поверхности, выполненное в виде  тканевого мелкосетчатого носителя, заполненного порошкообразным полимером  бицикло(2,2,1)гептана-2 или его метиловой производной с размером частиц полимера 0,01-2 мм. В качестве ткани используют нейлон, полиэфир, полипропилен, вискозу, хлопок. Средство предназначено для его использования в сложных погодных условиях (заявка Франции N 2611146, кл. В 01 D 1988).

 

 Известен способ очистки сточных вод от органических соединений, в том числе от нефтепродуктов, путем их фильтрации через сульфированный сополимер стиролвинилизопропилбензола (авт.св. СССР N 916415, кл. С 02 F 1/28, 1980).

 

 При пропускании через указанный  катионит 40 л сточной воды, содержащей 75 мг/л нефтепродуктов, степень очистки  составила 100%

 

 Для повышения емкости по НП из водных сред предложено использовать хлорметилированный сополимер стирола и 15-25% дивинилбензола, обработанного этиленгликолем с последующим элюминированием НП ацетоном (авт.св. СССР N 1444307, кл. С 02 F 11/28, 1986).

 

 Известна фильтрующая загрузка для очистки воды от нефти, выполненная из олефильного пенопласта, имеющего 45-70% сквозных и тупиковых пор от объема загрузки, при проходном сечении сквозной и тупиковой поры 10-60 мк (авт.св. СССР N 1662625, кл. В 01 D 39/100, 1987).

 

 Недостатком этих материалов  является сложность их получения  и низкая степень извлечения  НП (остаточные концентрации которых  составляют 0,5-1,0 мг/л), что на порядок  и более превышает ПДК.

 

 Известен также адсорбент для очистки сточных вод от нефти, полученный путем полимеризации стирола с последующим сшиванием полимера с помощью дивинилбензола, бутадиена, изопрена или хлорпрена (патент Японии N 52-23795, кл. В 01 D 15/00, 1977).

 

 Аналогичные адсорбенты типа  полисорбов рекомендовано использовать в технологии очистки воды от различных классов органических веществ, в том числе и растворенных в воде (Подлеснюк В.В. и Левченко Т.М. Химия и технология воды, 1983, N 5, с. 305-315, прототип).

 

 Эти методы являются наиболее  близкими по технической сущности  и достигаемому результату к предлагаемому.

 

 В предлагаемом способе используют  неионогенный полимерный материал, обладающий следующими структурными  характеристиками: удельная поверхность  Sуд 270-460 м2/г, объем мезопор Vме 0,2-0,23 г/см3, объем супермикропор Vcми 0,05-0,08 см3/г.

 

 Недостатком вышеприведенных  полимерных материалов является  то, что они не обладают необходимой  для тонкой очистки пористой  структурой и поэтому не обеспечивают  необходимых показателей очистки.

 

 Задачей изобретения является  разработка способа очистки вод  от нефтепродуктов путем сорбции, позволяющего повысить степень  очистки до норм ПДК, т.е. обеспечивающего  на выходе содержание НП в  сточных водах ниже 0,05 мг/л.

 

 Задача решается предложенным  способом очистки сточных вод  от нефтепродуктов путем их  контактирования с однородно-супермикропористым сополимером этилстирола и дивинилбензола, имеющим удельную поверхность Sуд. 700-1200 м2/г, общий объем пор Vo 0,4-0,6 см3/г при объеме супермикропор Vсми с радиусом пор 7-20 , равном 0,15-0,25 см3/г.

 

 Данный сополимер известен  под названием поролас-ТМ и производится в соответствии с ТУ 95.2187-90.

 

 П р и м е р 1. Ляльную воду после сепарации с содержанием нефтепродуктов 5-30 мг/л пропускают со скоростью 5 кол.об./ч (25 мл/ч) через слой 5 мл из частиц 0,2-0,8 мм однородно-супермикропористого сополимера этилстирола и дивинилбензола, характеризующегося Sуд 700-1200 м2/г, общим объемом пор 0,4-0,6 см3/г, объемом супермикропор (7-20 ) 0,15-0,25 см3/г (Поролас-ТМ).

 

 Одновременно воду в том  же режиме пропускают через  аналогичный сорбент Полисорб-1, но имеющий следующие параметры  строения: Sуд. 270-460 м2/г, общий объем пор 0,2-0,23 см3/г, объем супермикропор (7-20 ) 0,08 см3/г, а также через олеофильный пенопласт, имеющий суммарную долю сквозных и тупиковых пор 45-70% объема загрузки, а проходное сечение сквозной тупиковой поры 10-60 МК.

 

 Пропускание ведут до превышения  на выходе концентрации НП  свыше 0,05 мг/л.

 

 Результаты приведены в табл.

 

 

 

 П р и м е р 2. Проводят десорбцию НП, поглощенных пороласом-ТМ путем его выдержки в статических условиях в бензине при Т:Ж 1:8. При этом степень десорбции составляла 90%

 

 После этого по примеру 1 проводят  повторно очистку ляльных вод от НП в течение 5 циклов сорбции-десорбции. Показатели очистки на последующих циклах в сравнении с первоначальными увеличились в 1,5-2 раза, т.е. степень очистки ляльных вод возрастает и концентрации на выходе до насыщения пороласа-ТМ до 150-200 мг/г не превышают 0,03 мг/л.

 

 П р и м е р 3. По примеру 1 проводят очистку дистиллированной воды с содержанием НП 10 мг/л. При этом на пороласе-ТМ достигают следующие показатели очистки:

 

 Р 16000 К.О. (Окон < 0,05 мг/л)

 

 на полисорбе Р 2000 К.О (Окон < 0,05 мг/л)

 

 на пенопласте Р 2000 К.О. (Скон < 0,5-1,0 мг/л)

 

 Как видно из приведенных  примеров, предлагаемый способ позволяет  повысить в 4-8 раз показатели очистки  вод различного солевого состава (от морской воды до дистиллированной  воды) и достигнуть стабильных  норм в сбросных растворах  на уровне ПДК для открытых  водоемов.

 

 Способ может быть использован  при доочистке судовых (ляльных) вод, а также контурных вод АЭС от следов нефтепродуктов.

ФОРМУЛА ИЗОБРЕТЕНИЯ

 

СПОСОБ ОЧИСТКИ ВОД ОТ НЕФТЕПРОДУКТОВ, включающий их контактирование с пористым неионогенным полимерным материалом, отличающийся тем, что контактирование ведут с супермикропористым сополимером этилстирола и дивинилбензола, имеющим удельную поверхность 700 1200 м2/г, общий объем пор 0,4 0,6 см3/г и объем супермикропор с радиусом 7 20  0,15 0,35 см3/г.

 

http://www.ntpo.com/patents_water/water_1/water_940.shtml

 

Каждый водоем – это сложная система, где обитают бактерии, высшие водные растения, различные беспозвоночные животные. Совокупная их деятельность обеспечивает самоочищение водоемов.

 

Факторы самоочищения водоемов можно условно разделить на три группы:

 

физические,

 химические,

 биологические.

 

Среди физических факторов первостепенное значение имеет разбавление, растворение и перемешивание поступающих загрязнений. Хорошее перемешивание и снижение концентраций взвешенных частиц обеспечивается быстрым течением рек. Способствует самоочищению водоемов оседание на дно нерастворимых осадков, а также отстаивание загрязненных вод. В зонах с умеренным климатом река самоочищается через 200-300 км от места загрязнения, а на Крайнем Севере – через 2 тыс. км.

 

Обеззараживание воды происходит под влиянием ультрафиолетового излучения Солнца. Эффект обеззараживания достигается прямым губительным воздействием ультрафиолетовых лучей на белковые коллоиды и ферменты протоплазмы микробных клеток, а также споровые организмы и вирусы.

 

Из химических факторов самоочищения водоемов следует отметить окисление органических и неорганических веществ. Часто дают оценку самоочищения водоема по отношению к легко окисляемому органическому веществу или по общему содержанию органических веществ.

 

Санитарный режим водоема характеризуется прежде всего количеством растворенного в нем кислорода. Его должно бить не менее 4 мг на 1 л воды в любой период года для водоемов для водоемов первого и второго видов. К первому виду относят водоемы, используемые для питьевого водоснабжения предприятий, ко второму – используемые для купания, спортивных мероприятий, а также находящихся в черте населенных пунктов.

 

К биологическим факторам самоочищения водоема относятся:

 

Совокупность беспозвоночных гидробионтов-фильтраторов, зоопланктон;

 

Сообщества высших водных растений (макрофитов), которые задерживают часть биогенов (азот, фосфор) и загрязняющих веществ, поступающих в экосистему с прилегающей территории;

 

Бентос, задерживающий и поглощающий часть биогенов и поллютантов, мигрирующих на границе раздела вода/донные осадки;

 

Микроорганизмы, сорбированные на взвешенных частицах, перемещающихся относительно водной массы вследствие гравитационного оседания частиц под действием сил тяжести; в результате водная масса и микроорганизмы перемещаются относительно друг друга, что эквивалентно ситуации, когда вода профильтровывается через зернистый субстрат с прикрепленными микроорганизмами; последние извлекают из воды растворенные органические вещества и биогены;

 

Водоросли и фитопланктон;

 

Однако фитопланктон не всегда положительно воздействует на процессы самоочищения: в отдельных случаях массовое развитее сине-зеленых водорослей в искусственных водоемах можно рассматривать как процесс самозагрязнения.

 

Самоочищению водоемов от бактерий и вирусов могут способствовать и представители животного мира. Так, устрица и некоторые другие амебы адсорбируют кишечные и другие вирусы. Каждый моллюск отфильтровывает в сутки более 30 л воды.

 

 

 

Чистота водоемов немыслима без охраны их растительности. Только на основе глубокого знания экологии каждого водоема, эффективного контроля за развитием населяющих его различных живых организмов можно достичь положительных результатов, обеспечить прозрачность и высокую биологическую продуктивность рек, озер и водохранилищ.

 

Неблагоприятно на процессы самоочищения водоемов влияют и другие факторы. Химическое загрязнение водоемов промышленными стоками, биогенными элементами (азотом, фосфором и др.) тормозит естественные окислительные процессы, убивает микроорганизмы. То же относится и к спуску термальных сточных вод тепловыми электростанциями.

 

Скорость самоочищения водоёма и разложения углеродсодержащих соединений, включая ПАВ зависит от температуры, доступа кислорода, питательного режима водной среды, т.е. от тех факторов, которые определяют ее микробиологическую активность. В воде, обедненной кислородом, разложение углеродсодержащих соединений как правило замедляется.

 

Особенно медленно происходит самоочищение водоёмов от нефти. За 2-7 суток содержание эмульгированных нефтепродуктов в воде снижалось при 20 градусах  по Цельсию на 40%, а при 5 градусах лишь на 15%. В присутствии водной растительности в модельных опытах нефтяная пленка исчезала при ее толщине 0,06 см через 4-6 суток, а при 0,6 см – через 20-22 суток. Полное разложение нефти требует воздействия многочисленных бактерий разных видов, причем для разрушения образующихся промежуточных продуктов требуются свои микроорганизмы. Легче всего протекает микробиологическое разложение парафинов. Более стойкие циклопарафины и ароматические углеводороды сохраняются в водной среде гораздо дольше.

 

Ультрафиолетовая составляющая солнечной радиации существенно ускоряет деструкцию высокомолекулярных углеродсодержащих соединений, однако с экологической точки зрения этот процесс опасен из-за образования продуктов распада, как правило, сильно токсичных.

 

Как любая среда биосферы, водоём, имеет свои защитные силы и обладает способностью к самоочищению. Самоочищение происходит за счет разбавления, оседания частиц на дно и формирования отложений, разложение органических веществ до аммиака и его солей за счет действия микробов. Если водоем справляется, то все органические вещества превращаются в аммиак и его соли на 7-12 сутки, а далее количество аммиака и его солей начинает падать, так как наступает вторая фаза и соли аммиака превращаются в нитриты что происходит на 25-27 сутки. А дальше концентрация нитритов начинает падать, потому что все нитриты превратятся в нитраты на 32-35 сутки. То есть в идеале весь процесс самоочищения заканчивается примерно за месяц.

Информация о работе Очистка вод от нефтепродуктов