Использования мультимедийной аппаратуры в демонстрационном эксперименте по химии в 9 классе средней школы

Автор работы: Пользователь скрыл имя, 10 Февраля 2011 в 19:33, дипломная работа

Описание работы

Цель ВКР: Обобщение литературных данных и разработка методики использования мультимедийной аппаратуры в демонстрационном эксперименте по химии в 9 классе средней школы.

Содержание работы

Введение……………………………………………………………………...3
ГЛАВА I. Теоретические и психолого-методические основы применения МА в химическом эксперименте…………………………..5
1.1.Химический эксперимент в процессе обучения химии……………... 5
1.2. Психологические особенности применения МА в учебно-воспитательном процессе………………………………………………….8
1.3. Критерии отбора мультимедийной аппаратуры (МА)…………….10
1.4. Особенности работы с экранными пособиями на уроках…………16
1.5. Комплексное использование МА - необходимое условие интенсификации учебного процесса…………………………………….21
ГЛАВА II. Техника и методика использования МА
на уроках химии…………………………………………………………….26
2.1. Перспективы использования МА в современной школе…………..26
2.2. Экранная проекция как частный случай использования МА……..28
2.3. Кодоскоп и методика его использования в учебном процессе…….32
2.4. Демонстрация опытов с использованием кодоскопа……………….34
2.5.Диапроекция, как один из способов реализации принципа наглядности в демонстрационном эксперименте………………………37
ГЛАВА III. Практика использования МА в школьном демонстрационном эксперименте………………………………………..40
3.1. Применение мультимедийной аппаратуры в химическом демонстрационном эксперименте………………………………………..40
3.2. DVD-cборник химических опытов, созданный в ходе работы над ВКР, как пример использования МА химическом эксперименте……...54
Заключение………………………………………………………………………..57
Литература………………………………………………………………………...58

Файлы: 1 файл

Применение мультимедийных средств в химическом демонстрационном эксперименте.doc

— 436.00 Кб (Скачать файл)

2.3. Кодоскоп и методика его использования в учебном процессе.

       В современном учебном процессе большую роль приобретает передача информации методом наглядной демонстрации с речевым сопровождением преподавателя. Информация, поступающая в мозг человека через зрение и слух, распределяется примерно как 7-8:1. Это показывает особую важность подачи зрительной информации обучаемому. Поступление же информации сразу по двум каналам резко повышает количество воспринимаемого учебного материала и эффективность его усвоения. [1]  

       

       Большое распространение получил кодоскоп. Слово «кодоскоп» — производное от словосочетания «классная оптическая доска».И, действительно, кодоскоп (другое название «графопроектор» прекрасно заменяет обычную меловую доску.

       

       Рис. 1. Кодоскоп (графопроектор): 1 — корпус; 5 — стекло; 6 — головка; 8 — устройство установки резкости; 9 — катушки перемотки.

       Кодоскоп  — это проектор (рис.1.), воспроизводящий записи и рисунки непосредственно при их создании или выполненные заранее на прозрачной пленке (или стекле). В корпусе 1 находится мощная лампа, которая во время включения охлаждается вентилятором. Лампа находится в фокусе вогнутого зеркала, которое усиливает световой поток, падающий на линзу Френеля (обычно изготавливается из прозрачной термостойкой пластмассы). Над линзой закреплено стекло 5, называемое окном. На окно помещают пленки с рисунками или записями или другие прозрачные объекты. Изображение собирается в головке кодоскопа 6, состоящей из линзы и зеркала, отбрасывающего изображение на экран. Расположение изображения по высоте на экране устанавливается или поворотом в вертикальном направлении самой головки кодоскопа или зеркала. Резкость устанавливается перемещением вверх — вниз головки при помощи устройства 8. При расстоянии равном 2,5 м от кодоскопа до экрана изображения имеют размеры от 1,5 до 2 м (сторона квадрата) в зависимости от фокусного расстояния линзы.[1]

       Работа  с кодоскопом совершается двумя принципиально различными способами: 1.) с подвижной лентой и непрерывной записью отдельных предложений или формул и рисованием схем, графиков, диаграмм и т.п.; 2) с заранее изготовленными рисунками и текстами, транспарантами. [3]

       Окно  кодоскопа имеет размеры 25 х 25 см. На расстоянии 2,5 м до экрана оно увеличивается до 1,5-2 м. На расстоянии 5-7 м изображение заполняет обычный аудиторный киноэкран.

       Написанное  на прозрачной пленке слово, на экране становится в несколько раз больше, чем написанное мелом доске. Поэтому изображение хорошо видно даже сидящим в последних рядах в большой аудитории, при этом аудиторию, если прямой солнечный свет не падает на экран, затемнять не надо. Большие размеры букв, высокая яркость и контрастность предъявляет повышенные требования к почерку, аккуратности записей и рисунков. [2]

       

       Рис. 33. Схема автоматической ручки (рапидографа) для письма тушью на пленке: 1 — капилляр; 2 — стержень; 3 — цилиндрик

       При помощи кодоскопа можно демонстрировать опыты, проецируя их на экран. Для этого на окно помещают стекло, на которое кладут чашки с плоским прозрачным дном (чашки Петри). В чашки можно наливать различные растворы, индикаторы и т.п. Очень хорошо смотрятся опыты по взаимодействию кусочков лития, натрия и калия с водой, опыты по электролизу и т.п. Обычные лекционные демонстрации видны только учащимся, сидящим на первых рядах аудитории. При показе опытов через кодоскоп они видны учащимся всей аудитории, даже если выполняются с минимальными объемами реактивов.

       Использование кодоскопа также позволяет избавиться от развешенных на стенах таблиц, которые сильно отвлекают внимание аудитории. 
 

2.4. Демонстрация опытов с использованием кодоскопа.

                    Красивый   эксперимент   сам   по себе  часто гораздо ценнее,  чем двадцать   формул,    добытых   в реторте отвлеченной мысли. А. Эйнштейн.

       Физиологами установлено, что соотношение информации, поступающей в мозг человека через  зрение и слух, составляет примерно 7:1. Это убедительно подтверждает доминирующую роль зрения в процессе восприятия информации. Преподавание химии немыслимо без использования метода наглядной демонстрации и речевого сопровождения. При этом информация поступает к обучаемому сразу по двум каналам, что резко повышает количество воспринимаемого учебного материала и эффектность его усвоения.

       При совершенствовании этого метода нельзя ограничиваться только экстенсивными приемами (использование посуды большой вместимости, увеличение количества реактивов), поскольку отдельные признаки явления все равно остаются и в этом случае незамеченными: обычно учитель вынужден объяснять то, что учащиеся должны были наблюдать в опыте. Это сильно снижает активность школьников, затрудняет проведение аналитико-синтетической умственной работы (установление сходства, различий, обобщение полученных данных).[12]

       Необходимо  искать такие приемы, которые бы позволяли отчетливо рассматривать  все детали объекта изучения или  явления. Этому требованию отвечает применение технических средств обучения, в частности графопроектора (кодоскопа). Проецирование на экран делает демонстрацию отчетливой и выразительной, а также создает возможность наблюдения динамики процесса. Для постановки опытов этими способом требуются малые количества реактивов, что обеспечивает дополнительную безопасность.

       Проецирование используют при наличии явных преимуществ перед обычными способом постановки опытов, например, если:

       а)объект имеет небольшие размеры и  его нельзя рассмотреть с рабочих  мест; опыт небезопасен, и поэтому необходимо использовать малые количества реактивов (взаимодействие щелочных металлов с водой, кислотами и др.), Уменьшить возможность попадания вредных веществ в аудиторию (опыты с галогенами, оксидами азота, многими органическими веществами);

       б)опыт требует использования дорогих  или дефицитных реактивов (например, с нитратами серебра);

       в)нужно  существенно сэкономить время на уроке и поддерживать устойчивое внимание при наблюдении демонстрируемых  явлений (например, при проведении медленных реакций с органическими веществами, при электрической коррозии металлов, электролизе);

       Важно зафиксировать внимание учащихся на различных явлениях, происходящих во время проведения опыта (выделение пузырьков газа, образование оксидных пленок на металлах и др.).Замечу, что во всех случаях нужно принимать во внимание, что изображение, даже самое совершенное, не заменяет, а лишь дополняет демонстрацию натурального объекта.

       Опыты с применением графопроектора осуществляют следующим образом. На рабочее окно помещают проецируемую посуду: кюветы - простые и ячеистые из тонкого прозрачного материала (стекла или пластмассы), чашки Петри (диаметром 40 или 70 мм), часовые стекла, бюксы, стаканы.[12]

       Затем включают свет и регулируют яркость  изображения. Требуемое увеличение изображения получают, изменяя расстояние между экраном и графопроектором. Реагенты помещают в сосуды при включенном свете. Это дает возможность наблюдать все признаки, сопровождающие химическую реакцию, и повышает интерес учащихся. Осуществляя проекцию опытов на экран, необходимо в кювету или чашку Петри с водой прибавлять растворы по каплям; концентрация растворов, при сливании которых образуются осадки, должна быть 1-1,5 % (при использовании капельниц может быть и выше); для демонстрации цвета осадка сосуд, в котором протекает опыт, нужно приподнять над предметным стеклом графопроектора, и тогда в сильном свете цвет осадка будет хорошо виден.

       С помощью графопроектора можно демонстрировать  растворение, диффузию, осаждение, кристаллизацию, изменение окраски реагирующих веществ, выделение газа, Взаимодействие металлов с водой и кислотами, вытеснение металлов из растворов солей, изменение скорости реакции под влиянием разных факторов, катализ, движение ионов в электрическом поле, электролиз водных растворов, электрохимическую коррозию металлов и способы защиты от коррозии, цветные качественные реакции на отдельные вещества и др. [28] 
 
 
 
 
 
 
 
 
 
 
 

2.5.  Диапроекция, как один из способов реализации принципа наглядности в демонстрационном эксперименте.

       Применение  наглядных методов обучения обусловлено  дидактическим принципом наглядности, который получил свое обоснование еще в «Великой дидактике» Я.А.Коменского. Он писал: «... пусть будет для учащихся золотым правилом: все, что только можно, представлять для восприятия чувствами, а именно: видимое - для восприятия зрением, слышимое - слухом, запахи -обонянием, что можно вкусить - вкусом, доступное осязанию - путем осязания». [5] Именно Я.А.Коменский ввел термин «наглядные пособия», понимая под ними изображения или копии вещей, которые нельзя представить в натуре.

       Особенность химии как экспериментальной науки требует, чтобы ее преподавание опиралось на учебный химический эксперимент, через который реализуется один из основных дидактических принципов - наглядность обучения. Химический эксперимент является неотъемлемым элементом процесса познания. Он может быть первичным источником новых знаний, поскольку в основе всякой теории лежат опытные факты. [13]

       Одним из направлений, представляющим существенные возможности в техническом решении  улучшения видимости демонстрируемых  опытов, является их проекция на экран: диа - и эпипроекция. Необходимость разработки методических и технических основ взаимосвязи химического эксперимента с педагогической техникой и электроникой объясняется трудностями, которые испытывают учителя при работе с едкими и токсичными веществами: бензолом, фенолом, формалином, сероводородом, озоном, галогенами и др. Велики также экономические и трудовые затраты на подготовку многих демонстрационных опытов. Это ограничивает область их применения как средства иллюстрации, проверки и закрепления полученных знаний. В случаях быстро протекающих химических процессов обучаемые не успевают воспринимать необходимую информацию при конкретном показе таких опытов, следовательно, принцип наглядности не достигает цели даже при хорошей видимости. Плохо воспринимаются опыты со слабовыраженным внешним эффектом, а также демонстрации медленно протекающих процессов. Ряд опытов, формирующих политехническую направленность знаний, умений и навыков, оказываются недоступными при прямой их демонстрации.(опыты по движению ионов, флотации и др.)

       Большинство из перечисленных выше трудностей можно  преодолеть при работе с малыми количествами используемых при демонстрации веществ, в "полумикроисполнении" демонстрируемых  опытов, а необходимую наглядность обеспечить проекцией их на экран. Отметим, что такой способ оформления демонстрационного эксперимента не отрицает "живого созерцания" явлений. [17] Меняется только способ их восприятия. Увеличенный размер изображения по сравнению с натуральным позволяет рассмотреть существенные детали реально протекающего процесса, а потерянная "объемность" обычно оказывается несущественной деталью такой демонстрации.

       Отметим и другие достоинства проекции опытов на экран:

       а)  ученики замечают признаки химических процессов, которые они не могут выделить даже при выполнении многих лабораторных опытов;

        б) значительное сокращение времени, необходимого для восприятия существенных признаков наблюдаемых явлений, позволяет более полно и глубоко изучить их и закрепить изучаемый материал;

         Возможность экранной демонстрации опытов ограничена реакциями, которые протекают в прозрачной среде - растворах, газах или с участием прозрачных твердых веществ. В практике обучения такие опыты встречаются достаточно часто. Предлагаемые дополнительные приспособления к диапроекторам не лишают возможности их оперативного использования по прямому назначению, в том числе демонстрации диапозитивов, диафильмов и других средств наглядности.

       Химические  опыты,  проецируемые на  экран,  подразделяются на три группы:

       ■1. Опыты, которые особенно наглядны и убедительны при их проекции на экран. Таковыми являются опыты со слабо выраженным внешним эффектом или протекающие в замедленном темпе,  а также  опыты,  демонстрация которых становится опасной при применении больших количеств реагирующих веществ и поэтому   обычно   демонстрируемых   в   микро  и   полумикроколичествах. [23] Примерами такого рода могут служить опыты, иллюстрирующие молекулярно-генетическую теорию, а также многие из свойств веществ, объясняемые на ее основе:    диффузию,   осмос,    электролитическая   диссоциация,   выделение   и растворение газов в жидкостях, действие катализаторов, набухание, флотацию, свойства едких, токсичных и взрывоопасных веществ.

       ■2. Опыты,   в   которых  проекция  играет  вспомогательную  роль,   т.к.проецируется только часть процесса с целью фиксации существенных деталей, отдельных стадий протекающих процессов, не воспринимаемых при "прямой" демонстрации, или с целью фиксации конечных стадий опытов, сопряженных применением незначительных количеств реактивов или весьма разбавленных с растворами индикаторов.[23] Таковыми, например, являются опыты по получению и изучению свойств озона, образованию аммиака из азотоводородной смеси при атмосферном давлении.

Информация о работе Использования мультимедийной аппаратуры в демонстрационном эксперименте по химии в 9 классе средней школы