Гормоны

Автор работы: Пользователь скрыл имя, 21 Июня 2015 в 12:10, реферат

Описание работы

Гормоны – это продукты внутренней секреции, которые вырабатываются специальными железами или отдельными клетками, выделяются в кровь и разносятся по всему организму в норме вызывая определенный биологический эффект.
Сами гормоны непосредственно не влияют на какие-либо реакции клетки. Только связавшись с определенным, свойственным только ему рецептором вызывается определенная реакция.

Содержание работы

Введение
3
1) История развития учения о гармонах.
4
2) Номенклатура и классификация гормонов.
5
3) Характеристика стероидных гормонов.
7
4) Механизм действия стероидных гормонов.
13
5) Характеристика пептидных гормонов.
14
6)Механизм действия пептидных гормонов.
26
7) Характеристика групп прочих гормонов.
28
8) Применение гормонов в медицине, сельском хозяйстве и спорте.
33
Заключение
37
Список используемой литературы

Файлы: 1 файл

Гормоны.docx

— 702.59 Кб (Скачать файл)

Эстрогены повышают концентрации в крови тироксина, железа, меди. Оказывают антиатеросклеротическое действие, увеличивают содержание ЛПВП, уменьшает ЛПНП и холестерина (уровень триглицеридов возрастает).

Эстрогены модулируют чувствительность рецепторов к прогестинам и симпатическую регуляцию тонуса гладкой мускулатуры, стимулируют переход внутрисосудистой жидкости в ткани и вызывают компенсаторную задержку натрия и воды. В больших дозах препятствуют деградации эндогенных катехоламинов, конкурируя за активные рецепторы КОМТ.

После менопаузы в организме женщин образуется только незначительное количество эстрогенов. Снижение содержания эстрогенов сопровождается у многих женщин сосудодвигательной и терморегулирующей нестабильностью («приливы» крови к коже лица), расстройствами сна, а также прогрессирующей атрофией органов мочеполовой системы.

Вследствие дефицита эстрогенов в постменопаузном периоде у женщин развивается остеопороз (главным образом позвоночника).

Кортикостерон.

Кортикостерон — малозначимый и сравнительно малоактивный глюкокортикоидный гормон коры надпочечников у человека. Однако у крысы кортикостерон является основным и наиболее активным для неё глюкокортикоидом, подобно кортизолу у человека.

По сравнению с кортизолом обладает ощутимой, хотя и гораздо более слабой, чем у альдостерона, минералокортикоидной активностью.

Альдостерон.

 Альдостерон — основной  минералокортикостероидный гормон коры надпочечников у человека. У некоторых видов животных основным естественным минералокортикоидом является дезоксикортикостерон, а не альдостерон, но для человека дезоксикортикостерон относительно малоактивен.

Минералокортикоиды вызывают усиление канальцевой реабсорбции катионов натрия, анионов хлора и одновременно усиливают канальцевую экскрецию катионов калия и повышают гидрофильность тканей (способность тканей удерживать воду), способствуют переходу жидкости и натрия из сосудистого русла в ткани.

Альдостерон образуется в клубочковой зоне коры надпочечников и является единственным поступающим в кровь минералокортикоидом человека. Регуляция синтеза и секреции альдостерона осуществляется преимущественно ангиотензином-II, что дало основание считать альдостерон частью ренин-ангиотензин-альдостероновой системой (РААС), обеспечивающей регуляцию водно-солевого обмена и гемодинамики. Поскольку альдостерон регулирует содержание в крови ионов Na+ и K+, обратная связь в регуляции реализуется прямыми эффектами ионов, особенно К+, на клубочковую зону. В РААС обратные связи включаются при сдвигах содержания Na+ в моче дистальных канальцах, объема и давления крови. Механизм действия альдостерона, как и всех стероидных гормонов, состоит в прямом влиянии на генетический аппарат ядра клеток со стимуляцией синтеза соответствующих РНК, активации синтеза транспортирующих катионы белков и ферментов, а также повышении проницаемости мембран для аминокислот. Основные физиологические эффекты альдостерона заключаются в поддержании водно-солевого обмена между внешней и внутренней средой организма. Одними из главных органов-мишеней гормона являются почки, где альдостерон вызывает усиленную реабсорбцию натрия в дистальных канальцах с его задержкой в организме и повышении экскреции калия с мочой. Под влиянием альдостерона происходит задержка в организме хлоридов и воды, усиленное выделение Н-ионов и аммония, увеличивается объем циркулирующей крови, формируется сдвиг кислотно-щелочного состояния в сторону алкалоза. Действуя на клетки сосудов и тканей, гормон способствует транспорту Na+ и воды во внутриклеточное пространство.

Конечным результатом действия минералокортикоидов является увеличение объёма циркулирующей крови и повышение системного артериального давления. В патологических случаях гиперальдостеронизма это приводит к развитию отёков, гипернатриемии, гипокалиемии, гиперволемии, артериальной гипертензии и иногда застойной сердечной недостаточности.

4. Механизм действия  стероидных гормонов.

Механизм действия стероидных (жирорастворимых) гормонов

I. Проникновение стероида (С) в клетку

II.     Образование  комплекса СР

Все Р стероидных гормонов представляют собой глобулярные белки примерно одинакового размера, с очень высоким сродством связывающие гормоны

III. Трансформация СР в форму, способную связываться ядерными акцепторами [СР]

Любая клетка содержит всю генетическую информацию. Однако при специализации клетки большая часть ДНК лишается возможности быть матрицей для синтеза иРНК. Это достигается путем сворачивания вокруг белков гистонов, что ведет  к препятствию транскрипции. В связи с этим генетический материал клетки можно разделить на ДНК 3-х видов:

1.транскрипционно неактивная

2.постоянно экспрессируемая

3.индуцируемая гормонами или другими сигнальными    молекулами.

     IV.  Связывание [СР] с хроматиновым акцептором

     Следует отметить, что этот этап действия С полностью не изучен и имеет ряд спорных моментов. Считается что [СР] взаимодействует со специфическими участками ДНК так, что это дает возможность РНК-полимеразе вступить в контакт к определенным доменам ДНК.

     Интересным является опыт, который показал, что период полужизни иРНК при стимуляции гормоном увеличивается. Это приводит к многим противоречиям: становится непонятно ¾ увеличение количества иРНК свидетельствует, о том что [СР] повышает скорость транскрипции или увеличивает период полужизни иРНК; в то же время увеличение полужизни иРНК объясняется наличием большого числа рибосом в гормон-стимулированной клетке, которые стабилизируют иРНК или другим действием [СР] неизвестным для нас на сегодняшний момент.

V. Избирательная инициация транскрипции специфических иРНК; координированный синтез тРНК и рРНК

Можно полагать, что основной эффект [СР] состоит в разрыхлении конденсированного хроматина, что ведет к открыванию доступа к нему молекул РНК-полимеразы. Повышение количества иРНК приводит к увеличению синтеза тРНК и рРНК.

VI. Процессинг первичных РНК

VII. Транспорт мРНК в цитоплазму

VIII. Синтез белка

IX. Посттрансляционная модификация белка

Однако, как показывают исследования, это основной, но не единственно возможный механизм действия гормонов. Например, андрогены и эстрогены вызывают увеличение в некоторых клетках цАМФ что дает возможность предположить, что для стероидных гормонов имеются также мембранные рецепторы. Это показывают что стероидные гормоны действуют на некоторые чувствительные клетки как водорастворимые гормоны.

5. Характеристика пептидных гормонов.

Пептидные гормоны (peptide hormones) [греч. peptos — сваренный, переваренный и eidos — вид; греч. hormao — привожу в движение, побуждаю] гормоны, имеющие природу пептидную природу. Предшественниками большинства пептидных гормонов служат синтезируемые в соответствующих эндокринных железах более крупные молекулы, называемые прогормонами. В ряде случаев первичными продуктами являются еще более крупные белки, называемые препрогормоны. Прогормоны являются, вероятно, запасной формой потенциальных зрелых гормонов. Иногда в результате избирательного протеолиза крупной молекулы прогормона освобождаются несколько продуктов, обладающих различным биологическим действием (см. Проопиомеланокортин, ПОМК).

Пептидные гормоны и катехоламины, связываясь с мембранными рецепторами, влияют на внутриклеточную концентрацию циклических нуклеотидов и кальция и активность протеинкиназ.

Пептидные гормоны, включая АКТГ , ХГ и кальцитонин , могут образовываться в опухолях, исходящих из различных тканей, не обязательно секретирующих их в норме. Многие гормоны синтезируются в виде предшественников, которые расщепляются ферментами до прогормонов. Последние накапливаются и далее расщепляются до активных гормонов, выделяемых в кровь.

Впервые искусственный синтез зрелого пептидного гормона (окситоцина) осуществил В. дю Виньо в 1932 г. (Нобелевская премия за 1955 г.).

Инсули́н

Инсули́н (от лат. insula — остров) — гормон пептидной природы, образуется в бета-клетках островков Лангерганса поджелудочной железы. Оказывает многогранное влияние на обмен практически во всех тканях. Основное действие инсулина заключается в снижении концентрации глюкозы в крови.

Инсулин увеличивает проницаемость плазматических мембран для глюкозы, активирует ключевые ферменты гликолиза, стимулирует образование в печени и мышцах из глюкозы гликогена, усиливает синтез жиров и белков. Кроме того, инсулин подавляет активность ферментов, расщепляющих гликоген и жиры. То есть, помимо анаболического действия, инсулин обладает также и антикатаболическим эффектом.

Нарушение секреции инсулина вследствие деструкции бета-клеток — абсолютная недостаточность инсулина — является ключевым звеном патогенеза сахарного диабета 1-го типа. Нарушение действия инсулина на ткани — относительная инсулиновая недостаточность — имеет важное место в развитии сахарного диабета 2-го типа.

Так или иначе инсулин затрагивает все виды обмена веществ во всём организме. Однако в первую очередь действие инсулина касается именно обмена углеводов. Основное влияние инсулина на углеводный обмен связано с усилением транспорта глюкозы через клеточные мембраны. Активация инсулинового рецептора запускает внутриклеточный механизм, который напрямую влияет на поступление глюкозы в клетку путём регуляции количества и работы мембранных белков, переносящих глюкозу в клетку.

В наибольшей степени от инсулина зависит транспорт глюкозы в двух типах тканей: мышечная ткань (миоциты) и жировая ткань (адипоциты) — это т. н. инсулинозависимые ткани. Составляя вместе почти 2/3 всей клеточной массы человеческого тела, они выполняют в организме такие важные функции как движение, дыхание, кровообращение и т. п., осуществляют запасание выделенной из пищи энергии.

Адренокортикотропный гормон, или АКТГ, кортикотропин, адренокортикотропин, кортикотропный гормон (лат. adrenalis-надпочечный, лат. cortex-кора и греч. tropos — направление) — тропный гормон, вырабатываемый эозинофильными клетками передней доли гипофиза. По химическому строению АКТГ является пептидным гормоном.

Молекула АКТГ состоит из 39 аминокислотных остатков. Характеристики АКТГ определяются различными участками его пептидной цепи: участок с 4 по 10 аминокислоту является актоном (пептидом, определящим функцию, синтетический аналог этого участка — препарат Семакс), с 15 по 21 (особенно с 15 по 18) аминокислоту — гаптоном (пептидом, определяющим специфичность связывания с рецептором). Участок с 1 по 3 и с 11 по 13, по-видимому, обуславливает меланоцитостимулирующую роль АКТГ, с 25 по 33 — иммуногенные свойства АКТГ данного вида животного (он более других участков различается у различных видов животных). Участок с 20 по 24 защищает АКТГ от действия экзопептидаз, играя роль стабилизатора. Такая множественность обладающих биологической активностью участков АКТГ обуславливает наличие нескольких биологических эффектов гормона и возможность связывания его с несколькими видами рецепторов.

Гортикотропин контролирует синтез и секрецию гормонов коры надпочечников. В основном кортикотропин влияет на синтез и секрецию глюкокортикоидов — кортизола, кортизона, кортикостерона. Попутно повышается синтез надпочечниками прогестерона, андрогенов и эстрогенов.  Это может иметь как хронический, так и кратковременный характер. Относительно механизма стимуляции АКТГ синтеза кортикостероидов выдвигалось несколько теорий:

1)Теория Хейнса (R. C. Haynes). Согласно Хейнсу, АКТГ повышает активность аденилатциклазы, катализирующей превращение АТФ в циклический 3’,5’- аденозинмонофосфат (3’,5’- АМФ), активирующий фосфорилазу. Фосфорилаза, в свою очередь, расщепляет гликоген надпочечников до глюкозо-1-фосфата, превращающегося далее в глюкозо-6-фосфат. Глюкозо-6-фосфат, обмениваясь через пентозный цикл, приводит к увеличению восстановленного никотинамидадениндинуклеотидфосфата (НАДФН2), являющегося необходимым кофактором при превращении холестерина в прегненолон и при гидроксилировании стероидных предшественников до конечных продуктов стероидогенеза.

2) Теория МакКёрнса (K. W. McKerns). В целом сходна с предыдущей за исключением одного момента: она объясняет повышение концентрации НАДФН2 в надпочечниках не как результат усиления гликогенолиза, а как результат повышения активности глюкозо-6-фосфатдегидрогиназы.

3) Теория Гаррена (L. D. Garren) с сотр. Согласно этой теории, АКТГ стимулирует аденилатциклазу в мембранах клеток и увеличивает поступление циклического 3’,5’- АМФ в цитоплазму, где 3’,5’- цАМФ взаимодействует с комплексом рецепторный белок — протеинкиназа и, вызывая его диссоциацию, активирует протеинкиназу. Протеинкиназа фосфорилирует рибосомы и стимулирует в них синтез специального белка, проходящий с использованием стабильной иРНК в качестве матрицы. Образовавшийся белок производит перенос свободного холестерина из жировых капель цитоплазмы в митохондрии, где из него образуется прегненолон, а затем и кортикостероиды.

На данный момент подтверждённой считается теория Гаррена.

Гормон роста.

 Гормон роста (соматотропный  гормон, СТГ, соматотропин, соматропин) — один из гормонов передней доли гипофиза. Относится к семейству полипептидных гормонов, в которое входят также пролактин и плацентарный лактоген.

Гормоном роста соматотропин называют за то, что у детей и подростков, а также молодых людей с ещё не закрывшимися зонами роста в костях он вызывает выраженное ускорение линейного (в длину) роста, в основном за счет роста длинных трубчатых костей конечностей. Соматотропин оказывает мощное анаболическое и анти-катаболическое действие, усиливает синтез белка и тормозит его распад, а также способствует снижению отложения подкожного жира, усилению сгорания жира и увеличению соотношения мышечной массы к жировой. Кроме того, соматотропин принимает участие в регуляции углеводного обмена — он вызывает выраженное повышение уровня глюкозы в крови и является одним из контринсулярных гормонов, антагонистов инсулина по действию на углеводный обмен. Описано также его действие на островковые клетки поджелудочной железы, иммуностимулирующий эффект, усиление поглощения кальция костной тканью и др. Многие эффекты гормон роста вызывает непосредственно, но значительная часть его эффектов опосредуется инсулиноподобными факторами роста, главным образом IGF-1 (ранее его называли соматомедином С), который вырабатывается под действием гормона роста в печени и стимулирует рост большинства внутренних органов. Дополнительные количества IGF-1 (англ. Insulin–like growth factor) синтезируются в тканях-мишенях.

Кальцитонин.

Кальцитонин – пептидный гормон, продуцирующийся преимущественно парафолликуллярными С-клетками щитовидной железы, а также в небольшом количестве и в других органах, из них наиболее заметно в легких.

Информация о работе Гормоны