Каспийское море

Автор работы: Пользователь скрыл имя, 13 Ноября 2009 в 18:46, Не определен

Описание работы

Водный баланс и уровень моря.

Файлы: 1 файл

referat.doc

— 292.50 Кб (Скачать файл)

 Современное повышение уровня не представляет собой аномального явления. Как отмечалось, значительные колебания уровня наблюдались как в прошлом, так и в текущем столетии. Так, приращение уровня на 20-30 см в год отмечалось в 1865-1866, 1895-1896, 1933-1934, 1937-1938 гг. Повышение уровня моря, наблюдающееся с 1978 г., обусловлено главным образом увеличением объема поступающего в море волжского стока, а также количества атмосферных осадков,выпадающих на поверхность моря. В 1978—1983 гг. количество атмосферных осадков существенно превышало их среднюю многолетнюю норму, достигнув 256 мм в год.

 Внутригодовое изменение уровня имеет четко  выраженный сезонный характер (рис. 3), обусловленный изменчивостью составляющих водного баланса. В зимнее время  уровень - низкий, затем вследствие интенсивного поступления в море речных вод наблюдается его весенне-летнии подъем. Основное накопление воды в море происходит в июне—июле, и уровень достигает наивысшего положения. С августа, в связи с уменьшением речного притока и увеличением испарения с морской акватории, уровень постепенно понижается до зимнего минимума, наблюдающегося в январе-феврале.

 Средняя многолетняя  величина внутригодрвых изменений  уровня за 1900—1983 гг. составила 30 см (табл. 5). Наибольшая величина его 

Рис 2. Вековые изменения  уровня Каспийского  моря. 1500-1900-по Л. С. Бергу: 1901-1083 гг.-данные ГОИНа. 
 

      

 Рис 3.  Среднемноголнтние  внутригодовые изменения  уровня Каспийского  моря 1 - 1942-1955 гг., 2 - 1956-1984гг., 3 – 1970-1977гг., 4 – 1978-1984гг.

годовых изменений  наблюдалась в многоводный 1926 г. (50 см), наименьшая — в маловодный 1975 г. (25 см).

 Зарегулирование речного стока в бассейне Каспийского  моря повлияло на сезонный ход уровня. В современных условиях половодье  на Волге начинается на месяц-полтора  раньше и проходит быстрее, чем до 50-х годов. Это приводит к более раннему наступлению среднемесячного максимума в годовом ходе уровня. Весенне-летние попуски речной воды вызывают некоторое сглаживание хода уровня в это воемя года, а зимние попуски, наоборот, приводят к повышению уровня. Таким образом, в целом в течение года ход уровня стал более плавным (см. рис. 3).

 Большой научный и практический интерес  представляет разработка прогнозов  уровня моря. В настоящее время  существует несколько методов. Во-первых, это так называемые климатические (гелиогеофизи-

 

   

ческие) прогнозы. Они основаны на физических моделях, связывающих колебания уровня Каспия или отдельных составляющих водного  баланса с различными внешними факторами  — температурой воздуха и другими  метеорологическими характеристиками, атмосферной циркуляцией, солнечной активностью.

 Многие  авторы [Белинский, Калинин, 1946; Гире, 1971; Аполлов, Алексеева, 1959; Соскин, 1959; Эйгенсон, 1963; Антонов, 1963; и др.] проводили поиск  этих закономерностей временных  изменений уровня моря, обусловленных геофизическими и климатическими факторами. Однако климатический прогноз на длительное время для таких обширных территорий, как бассейн Каспия, продолжает оставаться одной из сложных и нерешенных проблем науки. Несмотря на то что наличие солнечно-земных связей в настоящее время признано, механизм этих связей и теоретическая сторона вопроса остаются во многом неясными. Зависимости между уровнем моря и характеристиками атмосферной циркуляции также далеко не всегда дают возможность получить прогноз на длительное время.

 Ко второй группе прогнозов относятся вероятностно-статистические методы, суть которых состоит в  вероятностном описании колебаний  уровня исходя из представлений о  порождающих их климатических и  гидрологических факторах как о  стохастических процессах [Крицкий и др., 1975]. Поскольку изменения водного баланса и уровня Каспия обусловлены взаимодействием двух основных факторов: поверхностного притока речных вод и видимого испарения (атмосферные осадки минус испарение),    то расчеты и моделирование рядов этих характеристик- позволяют исследовать изменчивость уровня моря как в естественных условиях формирования гидрологического режима, так и при различных его нарушениях.

 Расчеты вероятных  изменений уровня Каспийского моря на длительную перспективу, основанные на воднобалансовом методе, выполнены многими исследователями [Калинин, 1968; Архипова и др., 1972; Смирнова, 1972; Раткович и др., 1973; Шикломанов, 1976; и др.]. Полученные прогнозы хотя и отличаются друг от друга в количественном отношении, но сходны в том, что к концу столетия при средних гидрометеорологических условиях можно ожидать некоторого снижения уровня моря.

 Основным  затруднением разработки климатического направления прогнозов является то обстоятельство, что для построения надежных физических моделей необходимо найти такие определяющие внешние факторы, изменения которых опережали бы изменения уровня или составляющих водного баланса на срок не менее заблаговременное™ прогноза. Найти такие факторы трудно, поэтому возникает необходимость экстраполяции их, что представляет не менее сложную задачу, чем разработка самого метода сверхдолгосрочного прогноза уровня моря.

 Вероятностно-статистические методы прогноза имеют более строгую  теоретическую основу, чем климатические, но вероятностная форма получаемых прогнозов, когда однозначно определяется календарный ход уровня при средних условиях притока и испарения и задается широкая полоса вероятных отклонений положения уровня в каждый год прогнозируемого периода, затрудняет их практическое использование.

 Таким образом, в настоящее время не существует достаточно надежных методов прогнозирования ожидаемых изменений уровня Каспийского моря, что существенно затрудняет решение вопросов, связанных с экономикой и развитием народного хозяйства в бассейне моря. Разработка таких методов — одно из наиболее важных направлений исследований Каспия. 
 

                                 ГИДРОЛОГИЧЕСКАЯ  СТРУКТУРА И ВОДНЫЕ  МАССЫ. 

  Своеобразие условий формирования гидрологической  структуры вод Каспийского моря определяется его замкнутостью, внутриматериковым положением, большой меридиональной протяженностью, воздействием речного стока, конфигурацией берегов и рельефом морского дна.

Замкнутость моря исключает адвекцию вод из других бассейнов, предопределяет формирование „структуры вод Каспия путем взаимодействия процессов, происходящих в самом водоеме. Расположение моря глубоко внутри материка Евразии обусловливает значительное воздействие таких внешних факторов, как тепловое и динамическое состояние атмосферы и речной сток. Вытянутость моря в меридиональном направлении более чем на 10° создает большие климатические различия между отдельными его частями, сильнее всего проявляющиеся в зимний сезон. Сложный рельеф дна моря (глубоководные котловины, разделенные порогом, многочисленные острова и банки) влияет на особенности циркуляции вод и характер водообмена. Так, Апшеронский порог ограничивает водо-обмен между котловинами Среднего и Южного Каспия, способствуя формированию в каждой из них своеобразной гидрологической структуры.

  В целом  гидрологическая структура вод  моря создается путем взаимодействия процессов горизонтальной и вертикальной турбулентности и циркуляции вод, вызываемых различными факторами — полем ветра, потоками тепла и массы через поверхность моря, полем плотности, влиянием конфигурации берегов. Гидрологические условия в разных частях моря существенно зависят также от водообмена между ними.

  Сезонные  изменения гидрологических условий  в Каспийском море весьма значительны, хотя они неодинаковы по акватории и в общем уменьшаются в направлении с севера на юг. В Северном Каспии большая величина сезонных изменений теплового состояния вод определяется резкой кон-тинентальностью климата, а солености — сосредоточением здесь основного количества поступающих в море речных вод. По направлению на юг влияние этих факторов уменьшается. Кроме того, больший объем водных масс Среднего и Южного Каспия делает режим этих частей моря более устойчивым по отношению к внешним воздействиям, чем мелководного Северного Каспия.

  Зимой, благодаря  климатическим различиям между  северными и южными районами моря, температура воды на поверхности изменяется от О— 0,5° у кромки льда до 10,0—10,7° на юге моря. При этом у западного берега моря температура воды ниже благодаря переносу на юг холодных вод с севера, а вдоль восточного берега выше в связи с поступлением на север более теплых южнокаспийских вод. Вертикальные термические различия в толще вод зимой малы вследствие интенсивного развития процессов конвективного перемешивания.

  Летом, наоборот, климатические условия над акваторией моря квазиоднородные и горизонтальные температурные различия водных масс в целом меньше, чем зимой. В августе на большей части акватории температура воды на поверхности находится в пределах от 22—23 до 26—27°. Лишь в районе у восточного берега Среднего Каспия в июле—августе часто образуется обширная зона отрицательных аномалий температуры воды (до 16—11°). Ее образование связано со сгонным эффектом частых в летнее время и устойчивых северо-западных ветров, приводящим к выходу на поверхность более холодных вод промежуточных слоев. Эти воды выделяются также по своим химическим и биологическим характеристикам.

При интенсивном  прогреве моря весной на нижней границе  слоя ветрового перемешивания образуется термоклин, достигающий максимального развития в августе .Существование в летний сезон резко выраженного термоклина вблизи от поверхности моря ограничивает распространение термохалинных возмущений в глубинные слои воды. С началом осеннего охлаждения и развитием конвективного перемешивания термоклин разрушается, и в море снова формируется "зимний" тип распределения температуры со значительной однородностью ее по глубине и большими различиями в верхнем слое. Наибольшие годовые разности температуры воды на поверхности моря - до 20° - наблюдаются в его северных районах, а также у восточных берегов Южного Каспия, что обусловлено интенсивным летним прогревом и зимним охлаждением мелководий. Для центральной части Южного Каспия характерны наименьшие изменения температуры в течение года, соответствующие небольшим сезонным климатическим различиям. У западного и восточного берегов Среднего Каспия, в районах апвеллинга, величина годовой разности температуры на поверхности уменьшается на 14—15°.

Сезонные изменения температуры в глубинных слоях моря зависят от развития процессов конвективного перемешивания. В Среднем Каспии сезонные различия температуры наиболее существенны в слое толщиной около 200 м, в Южном Каспии — в слое до 100 м, что связано с развитием здесь зимней вертикальной циркуляции. В суровые зимы, когда конвекция распространяется до больших глубин, понижение температуры может охватывать более значительную толщу воды, а в Среднем Каспии оно доходит • до дна. В придонных слоях Среднего Каспия температура равна 4,5-5,0, Южного - 5,7-6,0°.

  На меридиональном разрезе вдоль 51° в.д.  максимальные величины годовой разности температуры  воды присущи верхнему слою толщиной 30—40 м . Наименьшие сезонные изменения  температуры (0,2—0,3°) в Среднем Каспии отмечаются в промежуточном слое 75—300 м. В Южном Каспии слой минимальной сезонной изменчивости (менее 0,1°) находится значительно глубже — от 350 до 650 м.

  Характерную особенность рассматриваемого разреза  представляет увеличение годовой разности температуры воды вдоль северного склона впадины и в придонных слоях Среднего Каспия, вплоть до Апшеронского порога. Это связано с влиянием процесса плотностного стока в зимнее время холодных вод по северному склону среднекаспийской впадины в ее придонные слои. В Южном Каспии, вдоль склона Апшеронского порога и в придонных слоях также прослеживается некоторое возрастание величин изменчивости температуры.

  Таким образом, распределение величин годовой  изменчивости температуры воды в Среднем и Южном Каспии свидетельствует о том, что наибольшие сезонные изменения отмечаются в верхнем слое, а также в придонных горизонтах и вдоль склонов глубоководных впадин, а в глубинной толще вод, особенно в южной части моря, они малы.

  Пространственные  изменения солености воды больше всего в Северном Каспии, где она возрастает от 0,1—0,2°/о о вблизи устьев Волги и Урала до 10—12°/о о на границе со Средним Каспием.

  В глубоководных  частях моря соленость на поверхности  увеличивается в целом с севера на юг и с запада на восток. Такое  распределение солености связано с опресняющим влиянием речного стока вдоль западного побережья и осолонением вод у восточного берега, в условиях полного отсутствия здесь пресного стока и интенсивного испарения. В откры-тых районах моря соленость редко выходит за пределы 12,7-13,2°/оо. Вертикальное .распределение солености в Среднем и Южном Каспии весьма однородное — от поверхности до дна ее увеличение не превышает десятых долей промилле .

  Изменения солености в различных районах  моря от сезона к сезону не отличаются той однонаправленностью, которая присуща изменениям температуры. Так, от весны к лету на всей акватории Южного Каспия соленость возрастает вследствие увеличения испарения. В то же время в Среднем Каспии, где проявляется влияние опресненных северокаспийских вод, соленость на большей части акватории понижается.

  Изменения солености от ноября к февралю  носят противоположный характер. В Южном Каспии соленость уменьшается, а в Среднем возрастает, что объясняется условиями водообмена между этими частями моря. В это время года более соленые южнокаспийские воды поступают в среднюю часть моря, а в южную выносятся менее соленые среднекаспийские воды.

Информация о работе Каспийское море