Особенности процесса биологического окисления (дыхания) микроорганизмов

Описание: Чтобы максимально использовать энергетические возможности, заложенные в процессе переноса электронов от субстрата на молекулярный кислород, необходимо было сформировать механизмы, позволяющие полностью отщеплять водород (электроны) от субстрата; создать системы, в которых весь отщепленный водород передается на O2 наиболее рациональным путем, образовать механизмы, при помощи которых энергия электронного переноса трансформируется в химическую энергию, доступную для использования во всех энергозависимых процессах клетки. В ходе эволюции эти задачи были решены следующим образом.
Реферат содержит 1 файл: 

курсовая.doc

164.00 Кб | Файл microsoft Word  открыть 
Не получается скачать реферат Особенности процесса биологического окисления (дыхания) микроорганизмов? - Техническая поддержка

курсовая.doc

Министерство  образования и науки Российской Федерации

Федеральное агентство по образованию

Южно-Уральский  государственный университет

     Специальность 080401 «Товароведение и экспертиза товаров» 
 
 
 
 
 
 

     Курсовая  работа

     На  тему: Особенности процесса биологического окисления (дыхания) микроорганизмов

     По  предмету: Основы микробиологии 

                  Выполнила:

                  студентка группы 372

                  Никонова  Ю.Ю.

                  Проверила:

                  Поторко И.Ю. 
                   
                   
                   
                   
                   
                   
                   
                   

     Уфа 2010г.

Содержание:
Введение 3
1. Дыхание  микробов 4
2. Цикл трикарбонатовых кислот 10
3. Дыхательная цепь 14
4. Запасание клеточной энергии в процессе дыхания 19
Заключение 22
Список  используемой литературы
    25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

      Введение  

     Чтобы максимально использовать энергетические возможности, заложенные в процессе переноса электронов от субстрата на молекулярный кислород, необходимо было сформировать механизмы, позволяющие полностью отщеплять водород (электроны) от субстрата; создать системы, в которых весь отщепленный водород передается на O2 наиболее рациональным путем, образовать механизмы, при помощи которых энергия электронного переноса трансформируется в химическую энергию, доступную для использования во всех энергозависимых процессах клетки. В ходе эволюции эти задачи были решены следующим образом.

  1. Полное отщепление водорода от органического субстрата достигается в результате функционирования ЦТК или окислительного пентозофосфатного цикла. Если энергетическим субстратом являются неорганические соединения, для их окисления также были сформированы ферментативные реакции, катализируемые соответствующими дегидрогеназами.
  2. Перенос водорода на молекулярный кислород осуществляется с помощью системы структурно и функционально взаимосвязанных переносчиков, составляющих в совокупности "дыхательную цепь".
  3. Энергетические возможности переноса электронов по электрохимическому градиенту реализуются в результате функционирования механизмов, сопрягающих электронный транспорт с фосфорилированием.

     Рассмотрим  подробнее в данной курсовой работе,   как была решена каждая задача.

 

      1. Дыхание микробов 

     Дыхание микробов представляет собой биологическое окисление различных органических соединений и некоторые минеральные вещества. В итоге окислительно-восстановительных процессов и брожения образуется тепловая энергия, которая частично используется микробной клеткой, а остальное количество выделяется в окружающую среду.

     В настоящее время окисление определяют как процесс отнятия водорода (дегидрирование), а восстановление - его присоединение. Эти же термины  применяют к реакциям, связанным  с переносом электронов. При окислении вещества происходит потеря электронов, а при восстановлении - их присоединение. Считают, что перенос водорода и перенос электронов - эквивалентные процессы. Способность соединений или элементов отдавать или принимать электроны обусловливаются окислительно-восстановительным потенциалом. По предложению М. Кларка, его обозначают гН2 (отрицательным логарифм порциального давления газообразного водорода). Это степень насыщения среды кислородом или водородом. Диапазон гН2 колеблется от 0 до 42,6. При rH2 < 28 среда обладает восстановительными свойствами, при rH2 >28 - окислительными, при rH2, равном28, - среда нейтральная. Аэробы живут при более высоком окислительно-восстановительном потенциале (rH2 14-35), анаэробы - при более низком (rH2 0-12). Таким образом, биологические преобразования в цитоплазме микробной клетки связаны с движением электронов, но это не простое электрическое движение, а сложный биологический процесс, который осуществляется при помощи ферментов. Последние катализируют реакции, ускоряют разрыв ковалентных связей и тем самым снижают энергию активации.

     Электроэнергия, вырабатывается микробами, может быть использована даже в некоторых приборах. В настоящее время сконструированы  передатчики, работающие на биологическом  электроэнергии, ее вырабатывают микроорганизмы, питающиеся сахаром, растворенным в морской воде. Энергия, освобождаемая в процессе окислительно-восстановительных реакций, накапливается в макроэргических соединениях АДФ и АТФ (аденозиндифосфат и аденозинтрифосфат). Эти соединения содержат макроэргические связи, обладающие большим запасом биологически доступной энергии. Они локализуются в сложно устроенных структурах микробных клеток - мезосомах, или митохондриях. Такие структуры имеют не только в растительных и животных клетках, но и в плесневых грибах, дрожжах и других микроорганизмах. Мезосомы представляют впячивания цитоплазматической мембраны и являются как бы электрическими станциями клеток, в которых происходит окисление углеводов, аминокислот, жирных кислот и других веществ. С мезосомами связан процесс окислительного фосфорилирования и снабжения микробной клетки энергией. Здесь же находятся ферменты, управляющие энергетическим процессом.

     Большое количество энергии, образуемой микроорганизмами, выделяется в окружающую среду и вызывает повышение температуры. Подобное явление наблюдается при силосовании кормов, биотермическом обеззараживании навоза, в скирдах или стогах плохо высушенного сена, во влажном зерне. Тепло, выделяемое микроорганизмами, называют биотопливом. Оно может быть использовано в практике сельского хозяйства при создании парников для выращивания ранних овощей, приготовлении бурого сена и в других случаях.

     По  типу дыхания микробов делят на аэробов, анаэробов и факультативных анаэробов. Аэробы хорошо растут на поверхности среды, которая соприкасается с воздухом. Анаэробы в такой среде жить не могут, так как они приспособлены к существованию при более низком окислительно-восстановительном потенциале.

     Факультативные  анаэробы могут жить при окислительно-восстановительном потенциале в пределах от 0 до 20 и выше. В такой диапазон укладывается окислительно-восстановительный потенциал как для аэробов (14-20 и выше), так и для анаэробов (0-12). Эта группа более многочисленна по своему составу, она включает в себя как сапрофитов, так и паразитов.

     Аэробное  дыхание микроорганизмов - это процесс, при котором последним акцептором водорода служит молекулярный кислород. В результате окисления главным образом сложных органических соединений образуется энергия, которая выделяется в среду или накапливается в макроэргических фосфатных связях АТФ. Различают полное и неполное окисление.

Страницы:    12345   следующая
Поиск по сайту

Предметы